

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/bitcoin/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/bitcoin/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

UNIX BUILD NOTES

Some notes on how to build Bitcoin Core in Unix.

(for OpenBSD specific instructions, see build-openbsd.md)

Note

Always use absolute paths to configure and compile bitcoin and the dependencies,
for example, when specifying the path of the dependency:

../dist/configure --enable-cxx --disable-shared --with-pic --prefix=$BDB_PREFIX

Here BDB_PREFIX must be an absolute path - it is defined using $(pwd) which ensures
the usage of the absolute path.

To Build

./autogen.sh
./configure
make
make install # optional

This will build bitcoin-qt as well if the dependencies are met.

Dependencies

These dependencies are required:

Library | Purpose | Description
————|——————|———————-
libssl | Crypto | Random Number Generation, Elliptic Curve Cryptography
libboost | Utility | Library for threading, data structures, etc
libevent | Networking | OS independent asynchronous networking

Optional dependencies:

Library | Purpose | Description
————|——————|———————-
miniupnpc | UPnP Support | Firewall-jumping support
libdb4.8 | Berkeley DB | Wallet storage (only needed when wallet enabled)
qt | GUI | GUI toolkit (only needed when GUI enabled)
protobuf | Payments in GUI | Data interchange format used for payment protocol (only needed when GUI enabled)
libqrencode | QR codes in GUI | Optional for generating QR codes (only needed when GUI enabled)
univalue | Utility | JSON parsing and encoding (bundled version will be used unless –with-system-univalue passed to configure)
libzmq3 | ZMQ notification | Optional, allows generating ZMQ notifications (requires ZMQ version >= 4.x)

For the versions used, see dependencies.md

Memory Requirements

C++ compilers are memory-hungry. It is recommended to have at least 1.5 GB of
memory available when compiling Bitcoin Core. On systems with less, gcc can be
tuned to conserve memory with additional CXXFLAGS:

./configure CXXFLAGS="--param ggc-min-expand=1 --param ggc-min-heapsize=32768"

Dependency Build Instructions: Ubuntu & Debian

Build requirements:

sudo apt-get install build-essential libtool autotools-dev automake pkg-config libssl-dev libevent-dev bsdmainutils python3

Options when installing required Boost library files:

	On at least Ubuntu 14.04+ and Debian 7+ there are generic names for the
individual boost development packages, so the following can be used to only
install necessary parts of boost:

 sudo apt-get install libboost-system-dev libboost-filesystem-dev libboost-chrono-dev libboost-program-options-dev libboost-test-dev libboost-thread-dev

	If that doesn’t work, you can install all boost development packages with:

 sudo apt-get install libboost-all-dev

BerkeleyDB is required for the wallet.

For Ubuntu only: db4.8 packages are available here [https://launchpad.net/~bitcoin/+archive/bitcoin].
You can add the repository and install using the following commands:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:bitcoin/bitcoin
sudo apt-get update
sudo apt-get install libdb4.8-dev libdb4.8++-dev

Ubuntu and Debian have their own libdb-dev and libdb++-dev packages, but these will install
BerkeleyDB 5.1 or later, which break binary wallet compatibility with the distributed executables which
are based on BerkeleyDB 4.8. If you do not care about wallet compatibility,
pass --with-incompatible-bdb to configure.

See the section “Disable-wallet mode” to build Bitcoin Core without wallet.

Optional (see –with-miniupnpc and –enable-upnp-default):

sudo apt-get install libminiupnpc-dev

ZMQ dependencies (provides ZMQ API 4.x):

sudo apt-get install libzmq3-dev

Dependencies for the GUI: Ubuntu & Debian

If you want to build Bitcoin-Qt, make sure that the required packages for Qt development
are installed. Either Qt 5 or Qt 4 are necessary to build the GUI.
If both Qt 4 and Qt 5 are installed, Qt 5 will be used. Pass --with-gui=qt4 to configure to choose Qt4.
To build without GUI pass --without-gui.

To build with Qt 5 (recommended) you need the following:

sudo apt-get install libqt5gui5 libqt5core5a libqt5dbus5 qttools5-dev qttools5-dev-tools libprotobuf-dev protobuf-compiler

Alternatively, to build with Qt 4 you need the following:

sudo apt-get install libqt4-dev libprotobuf-dev protobuf-compiler

libqrencode (optional) can be installed with:

sudo apt-get install libqrencode-dev

Once these are installed, they will be found by configure and a bitcoin-qt executable will be
built by default.

Dependency Build Instructions: Fedora

Build requirements:

sudo dnf install gcc-c++ libtool make autoconf automake openssl-devel libevent-devel boost-devel libdb4-devel libdb4-cxx-devel python3

Optional:

sudo dnf install miniupnpc-devel

To build with Qt 5 (recommended) you need the following:

sudo dnf install qt5-qttools-devel qt5-qtbase-devel protobuf-devel

libqrencode (optional) can be installed with:

sudo dnf install qrencode-devel

Notes

The release is built with GCC and then “strip bitcoind” to strip the debug
symbols, which reduces the executable size by about 90%.

miniupnpc

miniupnpc [http://miniupnp.free.fr/] may be used for UPnP port mapping. It can be downloaded from here [http://miniupnp.tuxfamily.org/files/]. UPnP support is compiled in and
turned off by default. See the configure options for upnp behavior desired:

--without-miniupnpc No UPnP support miniupnp not required
--disable-upnp-default (the default) UPnP support turned off by default at runtime
--enable-upnp-default UPnP support turned on by default at runtime

Berkeley DB

It is recommended to use Berkeley DB 4.8. If you have to build it yourself:

BITCOIN_ROOT=$(pwd)

Pick some path to install BDB to, here we create a directory within the bitcoin directory
BDB_PREFIX="${BITCOIN_ROOT}/db4"
mkdir -p $BDB_PREFIX

Fetch the source and verify that it is not tampered with
wget 'http://download.oracle.com/berkeley-db/db-4.8.30.NC.tar.gz'
echo '12edc0df75bf9abd7f82f821795bcee50f42cb2e5f76a6a281b85732798364ef db-4.8.30.NC.tar.gz' | sha256sum -c
-> db-4.8.30.NC.tar.gz: OK
tar -xzvf db-4.8.30.NC.tar.gz

Build the library and install to our prefix
cd db-4.8.30.NC/build_unix/
Note: Do a static build so that it can be embedded into the executable, instead of having to find a .so at runtime
../dist/configure --enable-cxx --disable-shared --with-pic --prefix=$BDB_PREFIX
make install

Configure Bitcoin Core to use our own-built instance of BDB
cd $BITCOIN_ROOT
./autogen.sh
./configure LDFLAGS="-L${BDB_PREFIX}/lib/" CPPFLAGS="-I${BDB_PREFIX}/include/" # (other args...)

Note: You only need Berkeley DB if the wallet is enabled (see the section Disable-Wallet mode below).

Boost

If you need to build Boost yourself:

sudo su
./bootstrap.sh
./bjam install

Security

To help make your bitcoin installation more secure by making certain attacks impossible to
exploit even if a vulnerability is found, binaries are hardened by default.
This can be disabled with:

Hardening Flags:

./configure --enable-hardening
./configure --disable-hardening

Hardening enables the following features:

	Position Independent Executable
Build position independent code to take advantage of Address Space Layout Randomization
offered by some kernels. Attackers who can cause execution of code at an arbitrary memory
location are thwarted if they don’t know where anything useful is located.
The stack and heap are randomly located by default but this allows the code section to be
randomly located as well.

On an AMD64 processor where a library was not compiled with -fPIC, this will cause an error
such as: “relocation R_X86_64_32 against `......’ can not be used when making a shared object;”

To test that you have built PIE executable, install scanelf, part of paxutils, and use:

 scanelf -e ./bitcoin

The output should contain:

TYPE
ET_DYN

	Non-executable Stack
If the stack is executable then trivial stack based buffer overflow exploits are possible if
vulnerable buffers are found. By default, bitcoin should be built with a non-executable stack
but if one of the libraries it uses asks for an executable stack or someone makes a mistake
and uses a compiler extension which requires an executable stack, it will silently build an
executable without the non-executable stack protection.

To verify that the stack is non-executable after compiling use:
scanelf -e ./bitcoin

the output should contain:
STK/REL/PTL
RW- R– RW-

The STK RW- means that the stack is readable and writeable but not executable.

Disable-wallet mode

When the intention is to run only a P2P node without a wallet, bitcoin may be compiled in
disable-wallet mode with:

./configure --disable-wallet

In this case there is no dependency on Berkeley DB 4.8.

Mining is also possible in disable-wallet mode, but only using the getblocktemplate RPC
call not getwork.

Additional Configure Flags

A list of additional configure flags can be displayed with:

./configure --help

Setup and Build Example: Arch Linux

This example lists the steps necessary to setup and build a command line only, non-wallet distribution of the latest changes on Arch Linux:

pacman -S git base-devel boost libevent python
git clone https://github.com/bitcoin/bitcoin.git
cd bitcoin/
./autogen.sh
./configure --disable-wallet --without-gui --without-miniupnpc
make check

Note:
Enabling wallet support requires either compiling against a Berkeley DB newer than 4.8 (package db) using --with-incompatible-bdb,
or building and depending on a local version of Berkeley DB 4.8. The readily available Arch Linux packages are currently built using
--with-incompatible-bdb according to the PKGBUILD [https://projects.archlinux.org/svntogit/community.git/tree/bitcoin/trunk/PKGBUILD].
As mentioned above, when maintaining portability of the wallet between the standard Bitcoin Core distributions and independently built
node software is desired, Berkeley DB 4.8 must be used.

ARM Cross-compilation

These steps can be performed on, for example, an Ubuntu VM. The depends system
will also work on other Linux distributions, however the commands for
installing the toolchain will be different.

Make sure you install the build requirements mentioned above.
Then, install the toolchain and curl:

sudo apt-get install g++-arm-linux-gnueabihf curl

To build executables for ARM:

cd depends
make HOST=arm-linux-gnueabihf NO_QT=1
cd ..
./configure --prefix=$PWD/depends/arm-linux-gnueabihf --enable-glibc-back-compat --enable-reduce-exports LDFLAGS=-static-libstdc++
make

For further documentation on the depends system see README.md in the depends directory.

Building on FreeBSD

(Updated as of FreeBSD 11.0)

Clang is installed by default as cc compiler, this makes it easier to get
started than on OpenBSD. Installing dependencies:

pkg install autoconf automake libtool pkgconf
pkg install boost-libs openssl libevent
pkg install gmake

You need to use GNU make (gmake) instead of make.
(libressl instead of openssl will also work)

For the wallet (optional):

pkg install db5

This will give a warning “configure: WARNING: Found Berkeley DB other
than 4.8; wallets opened by this build will not be portable!”, but as FreeBSD never
had a binary release, this may not matter. If backwards compatibility
with 4.8-built Bitcoin Core is needed follow the steps under “Berkeley DB” above.

Then build using:

./autogen.sh
./configure --with-incompatible-bdb BDB_CFLAGS="-I/usr/local/include/db5" BDB_LIBS="-L/usr/local/lib -ldb_cxx-5"
gmake

Note on debugging: The version of gdb installed by default is ancient and considered harmful [https://wiki.freebsd.org/GdbRetirement].
It is not suitable for debugging a multi-threaded C++ program, not even for getting backtraces. Please install the package gdb and
use the versioned gdb command e.g. gdb7111.

Benchmarking

Bitcoin Core has an internal benchmarking framework, with benchmarks
for cryptographic algorithms such as SHA1, SHA256, SHA512 and RIPEMD160. As well as the rolling bloom filter.

After compiling bitcoin-core, the benchmarks can be run with:
src/bench/bench_bitcoin

The output will look similar to:

#Benchmark,count,min,max,average
RIPEMD160,448,0.001245033173334,0.002638196945190,0.002461894814457
RollingBloom-refresh,1,0.000635000000000,0.000635000000000,0.000635000000000
RollingBloom-refresh,1,0.000108000000000,0.000108000000000,0.000108000000000
RollingBloom-refresh,1,0.000107000000000,0.000107000000000,0.000107000000000
RollingBloom-refresh,1,0.000204000000000,0.000204000000000,0.000204000000000
SHA1,640,0.000909024336207,0.001938136418660,0.001843086257577
SHA256,256,0.002209486499909,0.008500099182129,0.004300644621253
SHA512,384,0.001319904176016,0.002813005447388,0.002615700786312
Sleep100ms,10,0.205592155456543,0.210056066513062,0.104166316986084
Trig,67108864,0.000000014997003,0.000000015448112,0.000000015188842

More benchmarks are needed for, in no particular order:

	Script Validation

	CCoinDBView caching

	Coins database

	Memory pool

	Wallet coin selection

 (note: this is a temporary file, to be added-to by anybody, and moved to
release-notes at release time)

Bitcoin Core version version is now available from:

https://bitcoin.org/bin/bitcoin-core-*version*/

This is a new major version release, including new features, various bugfixes
and performance improvements, as well as updated translations.

Please report bugs using the issue tracker at GitHub:

https://github.com/bitcoin/bitcoin/issues

To receive security and update notifications, please subscribe to:

https://bitcoincore.org/en/list/announcements/join/

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac)
or bitcoind/bitcoin-qt (on Linux).

The first time you run version 0.15.0, your chainstate database will be converted to a
new format, which will take anywhere from a few minutes to half an hour,
depending on the speed of your machine.

Note that the block database format also changed in version 0.8.0 and there is no
automatic upgrade code from before version 0.8 to version 0.15.0. Upgrading
directly from 0.7.x and earlier without redownloading the blockchain is not supported.
However, as usual, old wallet versions are still supported.

Downgrading warning

The chainstate database for this release is not compatible with previous
releases, so if you run 0.15 and then decide to switch back to any
older version, you will need to run the old release with the -reindex-chainstate
option to rebuild the chainstate data structures in the old format.

If your node has pruning enabled, this will entail re-downloading and
processing the entire blockchain.

Compatibility

Bitcoin Core is extensively tested on multiple operating systems using
the Linux kernel, macOS 10.8+, and Windows Vista and later. Windows XP is not supported.

Bitcoin Core should also work on most other Unix-like systems but is not
frequently tested on them.

Notable changes

Miner block size limiting deprecated

Though blockmaxweight has been preferred for limiting the size of blocks returned by
getblocktemplate since 0.13.0, blockmaxsize remained as an option for those who wished
to limit their block size directly. Using this option resulted in a few UI issues as
well as non-optimal fee selection and ever-so-slightly worse performance, and has thus
now been deprecated. Further, the blockmaxsize option is now used only to calculate an
implied blockmaxweight, instead of limiting block size directly. Any miners who wish
to limit their blocks by size, instead of by weight, will have to do so manually by
removing transactions from their block template directly.

HD-wallets by default

Due to a backward-incompatible change in the wallet database, wallets created
with version 0.16.0 will be rejected by previous versions. Also, version 0.16.0
will only create hierarchical deterministic (HD) wallets.

Low-level RPC changes

	The “currentblocksize” value in getmininginfo has been removed.

	The deprecated RPC getinfo was removed. It is recommended that the more specific RPCs are used:
	getblockchaininfo

	getnetworkinfo

	getwalletinfo

	getmininginfo

	dumpwallet no longer allows overwriting files. This is a security measure
as well as prevents dangerous user mistakes.

Credits

Thanks to everyone who directly contributed to this release:

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

Travis CI

Support for using travis-ci has been added in order to automate pull-testing.
See travis-ci.org [https://travis-ci.org/] for more info

This procedure is different than the pull-tester that came before it in a few
ways.

There is nothing to administer. This is a major feature as it means
that builds have no local state. Because there is no ability to login to the
builders to install packages (tools, dependencies, etc), the entire build
procedure must instead be controlled by a declarative script .travis.yml.
This script declares each build configuration, creates virtual machines as
necessary, builds, then discards the virtual machines.

A build matrix is constructed to test a wide range of configurations, rather
than a single pass/fail. This helps to catch build failures and logic errors
that present on platforms other than the ones the author has tested. This
matrix is defined in the build script and can be changed at any time.

All builders use the dependency-generator in the depends dir, rather than
using apt-get to install build dependencies. This guarantees that the tester
is using the same versions as Gitian, so the build results are nearly identical
to what would be found in a final release. However, this also means that builds
will fail if new dependencies are introduced without being added to the
dependency generator.

In order to avoid rebuilding all dependencies for each build, the binaries are
cached and re-used when possible. Changes in the dependency-generator will
trigger cache-invalidation and rebuilds as necessary.

These caches can be manually removed if necessary. This is one of the very few
manual operations that is possible with Travis, and it can be done by the
Bitcoin Core committer via the Travis web interface.

In some cases, secure strings may be needed for hiding sensitive info such as
private keys or URLs. The travis client may be used to create these strings:
http://docs.travis-ci.com/user/encryption-keys/

For the details of the build descriptor, see the official docs:
http://docs.travis-ci.com/user/build-configuration/

Bitcoin Core

Setup

Bitcoin Core is the original Bitcoin client and it builds the backbone of the network. It downloads and, by default, stores the entire history of Bitcoin transactions (which is currently more than 100 GBs); depending on the speed of your computer and network connection, the synchronization process can take anywhere from a few hours to a day or more.

To download Bitcoin Core, visit bitcoincore.org [https://bitcoincore.org/en/releases/].

Running

The following are some helpful notes on how to run Bitcoin on your native platform.

Unix

Unpack the files into a directory and run:

	bin/bitcoin-qt (GUI) or

	bin/bitcoind (headless)

Windows

Unpack the files into a directory, and then run bitcoin-qt.exe.

OS X

Drag Bitcoin-Core to your applications folder, and then run Bitcoin-Core.

Need Help?

	See the documentation at the Bitcoin Wiki [https://en.bitcoin.it/wiki/Main_Page]
for help and more information.

	Ask for help on #bitcoin [http://webchat.freenode.net?channels=bitcoin] on Freenode. If you don’t have an IRC client use webchat here [http://webchat.freenode.net?channels=bitcoin].

	Ask for help on the BitcoinTalk [https://bitcointalk.org/] forums, in the Technical Support board [https://bitcointalk.org/index.php?board=4.0].

Building

The following are developer notes on how to build Bitcoin on your native platform. They are not complete guides, but include notes on the necessary libraries, compile flags, etc.

	Dependencies

	OS X Build Notes

	Unix Build Notes

	Windows Build Notes

	OpenBSD Build Notes

	Gitian Building Guide

Development

The Bitcoin repo’s root README contains relevant information on the development process and automated testing.

	Developer Notes

	Release Notes

	Release Process

	Source Code Documentation (External Link) [https://dev.visucore.com/bitcoin/doxygen/]

	Translation Process

	Translation Strings Policy

	Travis CI

	Unauthenticated REST Interface

	Shared Libraries

	BIPS

	Dnsseed Policy

	Benchmarking

Resources

	Discuss on the BitcoinTalk [https://bitcointalk.org/] forums, in the Development & Technical Discussion board [https://bitcointalk.org/index.php?board=6.0].

	Discuss project-specific development on #bitcoin-core-dev on Freenode. If you don’t have an IRC client use webchat here [http://webchat.freenode.net/?channels=bitcoin-core-dev].

	Discuss general Bitcoin development on #bitcoin-dev on Freenode. If you don’t have an IRC client use webchat here [http://webchat.freenode.net/?channels=bitcoin-dev].

Miscellaneous

	Assets Attribution

	Files

	Fuzz-testing

	Reduce Traffic

	Tor Support

	Init Scripts (systemd/upstart/openrc)

	ZMQ

License

Distributed under the MIT software license.
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit [https://www.openssl.org/]. This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com), and UPnP software written by Thomas Bernard.

Release Process

Before every release candidate:

	Update translations (ping wumpus on IRC) see translation_process.md [https://github.com/bitcoin/bitcoin/blob/master/doc/translation_process.md#synchronising-translations].

	Update manpages, see gen-manpages.sh [https://github.com/bitcoin/bitcoin/blob/master/contrib/devtools/README.md#gen-manpagessh].

Before every minor and major release:

	Update bips.md to account for changes since the last release.

	Update version in configure.ac (don’t forget to set CLIENT_VERSION_IS_RELEASE to true)

	Write release notes (see below)

	Update src/chainparams.cpp nMinimumChainWork with information from the getblockchaininfo rpc.

	Update src/chainparams.cpp defaultAssumeValid with information from the getblockhash rpc.
	The selected value must not be orphaned so it may be useful to set the value two blocks back from the tip.

	Testnet should be set some tens of thousands back from the tip due to reorgs there.

	This update should be reviewed with a reindex-chainstate with assumevalid=0 to catch any defect
that causes rejection of blocks in the past history.

Before every major release:

	Update hardcoded seeds, see this pull request [https://github.com/bitcoin/bitcoin/pull/7415] for an example.

	Update BLOCK_CHAIN_SIZE to the current size plus some overhead.

	Update src/chainparams.cpp chainTxData with statistics about the transaction count and rate.

	Update version of contrib/gitian-descriptors/*.yml: usually one’d want to do this on master after branching off the release - but be sure to at least do it before a new major release

First time / New builders

If you’re using the automated script (found in contrib/gitian-build.sh), then at this point you should run it with the “–setup” command. Otherwise ignore this.

Check out the source code in the following directory hierarchy.

cd /path/to/your/toplevel/build
git clone https://github.com/bitcoin-core/gitian.sigs.git
git clone https://github.com/bitcoin-core/bitcoin-detached-sigs.git
git clone https://github.com/devrandom/gitian-builder.git
git clone https://github.com/bitcoin/bitcoin.git

Bitcoin maintainers/release engineers, suggestion for writing release notes

Write release notes. git shortlog helps a lot, for example:

git shortlog --no-merges v(current version, e.g. 0.7.2)..v(new version, e.g. 0.8.0)

(or ping @wumpus on IRC, he has specific tooling to generate the list of merged pulls
and sort them into categories based on labels)

Generate list of authors:

git log --format='%aN' "$*" | sort -ui | sed -e 's/^/- /'

Tag version (or release candidate) in git

git tag -s v(new version, e.g. 0.8.0)

Setup and perform Gitian builds

If you’re using the automated script (found in contrib/gitian-build.sh), then at this point you should run it with the “–build” command. Otherwise ignore this.

Setup Gitian descriptors:

pushd ./bitcoin
export SIGNER=(your Gitian key, ie bluematt, sipa, etc)
export VERSION=(new version, e.g. 0.8.0)
git fetch
git checkout v${VERSION}
popd

Ensure your gitian.sigs are up-to-date if you wish to gverify your builds against other Gitian signatures.

pushd ./gitian.sigs
git pull
popd

Ensure gitian-builder is up-to-date:

pushd ./gitian-builder
git pull
popd

Fetch and create inputs: (first time, or when dependency versions change)

pushd ./gitian-builder
mkdir -p inputs
wget -P inputs https://bitcoincore.org/cfields/osslsigncode-Backports-to-1.7.1.patch
wget -P inputs http://downloads.sourceforge.net/project/osslsigncode/osslsigncode/osslsigncode-1.7.1.tar.gz
popd

Create the OS X SDK tarball, see the OS X readme for details, and copy it into the inputs directory.

Optional: Seed the Gitian sources cache and offline git repositories

By default, Gitian will fetch source files as needed. To cache them ahead of time:

pushd ./gitian-builder
make -C ../bitcoin/depends download SOURCES_PATH=`pwd`/cache/common
popd

Only missing files will be fetched, so this is safe to re-run for each build.

NOTE: Offline builds must use the –url flag to ensure Gitian fetches only from local URLs. For example:

pushd ./gitian-builder
./bin/gbuild --url bitcoin=/path/to/bitcoin,signature=/path/to/sigs {rest of arguments}
popd

The gbuild invocations below DO NOT DO THIS by default.

Build and sign Bitcoin Core for Linux, Windows, and OS X:

pushd ./gitian-builder
./bin/gbuild --num-make 2 --memory 3000 --commit bitcoin=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-linux.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-linux --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-linux.yml
mv build/out/bitcoin-*.tar.gz build/out/src/bitcoin-*.tar.gz ../

./bin/gbuild --num-make 2 --memory 3000 --commit bitcoin=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-win.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-win-unsigned --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-win.yml
mv build/out/bitcoin-*-win-unsigned.tar.gz inputs/bitcoin-win-unsigned.tar.gz
mv build/out/bitcoin-*.zip build/out/bitcoin-*.exe ../

./bin/gbuild --num-make 2 --memory 3000 --commit bitcoin=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-osx.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-osx-unsigned --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-osx.yml
mv build/out/bitcoin-*-osx-unsigned.tar.gz inputs/bitcoin-osx-unsigned.tar.gz
mv build/out/bitcoin-*.tar.gz build/out/bitcoin-*.dmg ../
popd

Build output expected:

	source tarball (bitcoin-${VERSION}.tar.gz)

	linux 32-bit and 64-bit dist tarballs (bitcoin-${VERSION}-linux[32|64].tar.gz)

	windows 32-bit and 64-bit unsigned installers and dist zips (bitcoin-${VERSION}-win[32|64]-setup-unsigned.exe, bitcoin-${VERSION}-win[32|64].zip)

	OS X unsigned installer and dist tarball (bitcoin-${VERSION}-osx-unsigned.dmg, bitcoin-${VERSION}-osx64.tar.gz)

	Gitian signatures (in gitian.sigs/${VERSION}-<linux|{win,osx}-unsigned>/(your Gitian key)/)

Verify other gitian builders signatures to your own. (Optional)

Add other gitian builders keys to your gpg keyring, and/or refresh keys.

gpg --import bitcoin/contrib/gitian-keys/*.pgp
gpg --refresh-keys

Verify the signatures

pushd ./gitian-builder
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-linux ../bitcoin/contrib/gitian-descriptors/gitian-linux.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-win-unsigned ../bitcoin/contrib/gitian-descriptors/gitian-win.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-osx-unsigned ../bitcoin/contrib/gitian-descriptors/gitian-osx.yml
popd

Next steps:

Commit your signature to gitian.sigs:

pushd gitian.sigs
git add ${VERSION}-linux/${SIGNER}
git add ${VERSION}-win-unsigned/${SIGNER}
git add ${VERSION}-osx-unsigned/${SIGNER}
git commit -a
git push # Assuming you can push to the gitian.sigs tree
popd

Codesigner only: Create Windows/OS X detached signatures:

	Only one person handles codesigning. Everyone else should skip to the next step.

	Only once the Windows/OS X builds each have 3 matching signatures may they be signed with their respective release keys.

Codesigner only: Sign the osx binary:

transfer bitcoin-osx-unsigned.tar.gz to osx for signing
tar xf bitcoin-osx-unsigned.tar.gz
./detached-sig-create.sh -s "Key ID"
Enter the keychain password and authorize the signature
Move signature-osx.tar.gz back to the gitian host

Codesigner only: Sign the windows binaries:

tar xf bitcoin-win-unsigned.tar.gz
./detached-sig-create.sh -key /path/to/codesign.key
Enter the passphrase for the key when prompted
signature-win.tar.gz will be created

Codesigner only: Commit the detached codesign payloads:

cd ~/bitcoin-detached-sigs
checkout the appropriate branch for this release series
rm -rf *
tar xf signature-osx.tar.gz
tar xf signature-win.tar.gz
git add -a
git commit -m "point to ${VERSION}"
git tag -s v${VERSION} HEAD
git push the current branch and new tag

Non-codesigners: wait for Windows/OS X detached signatures:

	Once the Windows/OS X builds each have 3 matching signatures, they will be signed with their respective release keys.

	Detached signatures will then be committed to the bitcoin-detached-sigs [https://github.com/bitcoin-core/bitcoin-detached-sigs] repository, which can be combined with the unsigned apps to create signed binaries.

Create (and optionally verify) the signed OS X binary:

pushd ./gitian-builder
./bin/gbuild -i --commit signature=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-osx-signer.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-osx-signed --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-osx-signer.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-osx-signed ../bitcoin/contrib/gitian-descriptors/gitian-osx-signer.yml
mv build/out/bitcoin-osx-signed.dmg ../bitcoin-${VERSION}-osx.dmg
popd

Create (and optionally verify) the signed Windows binaries:

pushd ./gitian-builder
./bin/gbuild -i --commit signature=v${VERSION} ../bitcoin/contrib/gitian-descriptors/gitian-win-signer.yml
./bin/gsign --signer $SIGNER --release ${VERSION}-win-signed --destination ../gitian.sigs/ ../bitcoin/contrib/gitian-descriptors/gitian-win-signer.yml
./bin/gverify -v -d ../gitian.sigs/ -r ${VERSION}-win-signed ../bitcoin/contrib/gitian-descriptors/gitian-win-signer.yml
mv build/out/bitcoin-*win64-setup.exe ../bitcoin-${VERSION}-win64-setup.exe
mv build/out/bitcoin-*win32-setup.exe ../bitcoin-${VERSION}-win32-setup.exe
popd

Commit your signature for the signed OS X/Windows binaries:

pushd gitian.sigs
git add ${VERSION}-osx-signed/${SIGNER}
git add ${VERSION}-win-signed/${SIGNER}
git commit -a
git push # Assuming you can push to the gitian.sigs tree
popd

After 3 or more people have gitian-built and their results match:

	Create SHA256SUMS.asc for the builds, and GPG-sign it:

sha256sum * > SHA256SUMS

The list of files should be:

bitcoin-${VERSION}-aarch64-linux-gnu.tar.gz
bitcoin-${VERSION}-arm-linux-gnueabihf.tar.gz
bitcoin-${VERSION}-i686-pc-linux-gnu.tar.gz
bitcoin-${VERSION}-x86_64-linux-gnu.tar.gz
bitcoin-${VERSION}-osx64.tar.gz
bitcoin-${VERSION}-osx.dmg
bitcoin-${VERSION}.tar.gz
bitcoin-${VERSION}-win32-setup.exe
bitcoin-${VERSION}-win32.zip
bitcoin-${VERSION}-win64-setup.exe
bitcoin-${VERSION}-win64.zip

The *-debug* files generated by the gitian build contain debug symbols
for troubleshooting by developers. It is assumed that anyone that is interested
in debugging can run gitian to generate the files for themselves. To avoid
end-user confusion about which file to pick, as well as save storage
space do not upload these to the bitcoin.org server, nor put them in the torrent.

	GPG-sign it, delete the unsigned file:

gpg --digest-algo sha256 --clearsign SHA256SUMS # outputs SHA256SUMS.asc
rm SHA256SUMS

(the digest algorithm is forced to sha256 to avoid confusion of the Hash: header that GPG adds with the SHA256 used for the files)
Note: check that SHA256SUMS itself doesn’t end up in SHA256SUMS, which is a spurious/nonsensical entry.

	Upload zips and installers, as well as SHA256SUMS.asc from last step, to the bitcoin.org server
into /var/www/bin/bitcoin-core-${VERSION}

	A .torrent will appear in the directory after a few minutes. Optionally help seed this torrent. To get the magnet: URI use:

transmission-show -m <torrent file>

Insert the magnet URI into the announcement sent to mailing lists. This permits
people without access to bitcoin.org to download the binary distribution.
Also put it into the optional_magnetlink: slot in the YAML file for
bitcoin.org (see below for bitcoin.org update instructions).

	Update bitcoin.org version
	First, check to see if the Bitcoin.org maintainers have prepared a
release: https://github.com/bitcoin-dot-org/bitcoin.org/labels/Releases
	If they have, it will have previously failed their Travis CI
checks because the final release files weren’t uploaded.
Trigger a Travis CI rebuild—if it passes, merge.

	If they have not prepared a release, follow the Bitcoin.org release
instructions: https://github.com/bitcoin-dot-org/bitcoin.org#release-notes

	After the pull request is merged, the website will automatically show the newest version within 15 minutes, as well
as update the OS download links. Ping @saivann/@harding (saivann/harding on Freenode) in case anything goes wrong

	Announce the release:
	bitcoin-dev and bitcoin-core-dev mailing list

	Bitcoin Core announcements list https://bitcoincore.org/en/list/announcements/join/

	bitcoincore.org blog post

	Update title of #bitcoin on Freenode IRC

	Optionally twitter, reddit /r/Bitcoin, ... but this will usually sort out itself

	Notify BlueMatt so that he can start building the PPAs [https://launchpad.net/~bitcoin/+archive/ubuntu/bitcoin]

	Archive release notes for the new version to doc/release-notes/ (branch master and branch of the release)

	Create a new GitHub release [https://github.com/bitcoin/bitcoin/releases/new] with a link to the archived release notes.

	Celebrate

Block and Transaction Broadcasting with ZeroMQ

ZeroMQ [http://zeromq.org/] is a lightweight wrapper around TCP
connections, inter-process communication, and shared-memory,
providing various message-oriented semantics such as publish/subscribe,
request/reply, and push/pull.

The Bitcoin Core daemon can be configured to act as a trusted “border
router”, implementing the bitcoin wire protocol and relay, making
consensus decisions, maintaining the local blockchain database,
broadcasting locally generated transactions into the network, and
providing a queryable RPC interface to interact on a polled basis for
requesting blockchain related data. However, there exists only a
limited service to notify external software of events like the arrival
of new blocks or transactions.

The ZeroMQ facility implements a notification interface through a set
of specific notifiers. Currently there are notifiers that publish
blocks and transactions. This read-only facility requires only the
connection of a corresponding ZeroMQ subscriber port in receiving
software; it is not authenticated nor is there any two-way protocol
involvement. Therefore, subscribers should validate the received data
since it may be out of date, incomplete or even invalid.

ZeroMQ sockets are self-connecting and self-healing; that is,
connections made between two endpoints will be automatically restored
after an outage, and either end may be freely started or stopped in
any order.

Because ZeroMQ is message oriented, subscribers receive transactions
and blocks all-at-once and do not need to implement any sort of
buffering or reassembly.

Prerequisites

The ZeroMQ feature in Bitcoin Core requires ZeroMQ API version 4.x or
newer. Typically, it is packaged by distributions as something like
libzmq3-dev. The C++ wrapper for ZeroMQ is not needed.

In order to run the example Python client scripts in contrib/ one must
also install python3-zmq, though this is not necessary for daemon
operation.

Enabling

By default, the ZeroMQ feature is automatically compiled in if the
necessary prerequisites are found. To disable, use –disable-zmq
during the configure step of building bitcoind:

$./configure --disable-zmq (other options)

To actually enable operation, one must set the appropriate options on
the command line or in the configuration file.

Usage

Currently, the following notifications are supported:

-zmqpubhashtx=address
-zmqpubhashblock=address
-zmqpubrawblock=address
-zmqpubrawtx=address

The socket type is PUB and the address must be a valid ZeroMQ socket
address. The same address can be used in more than one notification.

For instance:

$ bitcoind -zmqpubhashtx=tcp://127.0.0.1:28332 \
 -zmqpubrawtx=ipc:///tmp/bitcoind.tx.raw

Each PUB notification has a topic and body, where the header
corresponds to the notification type. For instance, for the
notification -zmqpubhashtx the topic is hashtx (no null
terminator) and the body is the transaction hash (32
bytes).

These options can also be provided in bitcoin.conf.

ZeroMQ endpoint specifiers for TCP (and others) are documented in the
ZeroMQ API [http://api.zeromq.org/4-0:_start].

Client side, then, the ZeroMQ subscriber socket must have the
ZMQ_SUBSCRIBE option set to one or either of these prefixes (for
instance, just hash); without doing so will result in no messages
arriving. Please see contrib/zmq/zmq_sub.py for a working example.

Remarks

From the perspective of bitcoind, the ZeroMQ socket is write-only; PUB
sockets don’t even have a read function. Thus, there is no state
introduced into bitcoind directly. Furthermore, no information is
broadcast that wasn’t already received from the public P2P network.

No authentication or authorization is done on connecting clients; it
is assumed that the ZeroMQ port is exposed only to trusted entities,
using other means such as firewalling.

Note that when the block chain tip changes, a reorganisation may occur
and just the tip will be notified. It is up to the subscriber to
retrieve the chain from the last known block to the new tip.

There are several possibilities that ZMQ notification can get lost
during transmission depending on the communication type your are
using. Bitcoind appends an up-counting sequence number to each
notification which allows listeners to detect lost notifications.

Expectations for DNS Seed operators

Bitcoin Core attempts to minimize the level of trust in DNS seeds,
but DNS seeds still pose a small amount of risk for the network.
As such, DNS seeds must be run by entities which have some minimum
level of trust within the Bitcoin community.

Other implementations of Bitcoin software may also use the same
seeds and may be more exposed. In light of this exposure, this
document establishes some basic expectations for operating dnsseeds.

	A DNS seed operating organization or person is expected to follow good
host security practices, maintain control of applicable infrastructure,
and not sell or transfer control of the DNS seed. Any hosting services
contracted by the operator are equally expected to uphold these expectations.

	The DNS seed results must consist exclusively of fairly selected and
functioning Bitcoin nodes from the public network to the best of the
operator’s understanding and capability.

	For the avoidance of doubt, the results may be randomized but must not
single-out any group of hosts to receive different results unless due to an
urgent technical necessity and disclosed.

	The results may not be served with a DNS TTL of less than one minute.

	Any logging of DNS queries should be only that which is necessary
for the operation of the service or urgent health of the Bitcoin
network and must not be retained longer than necessary nor disclosed
to any third party.

	Information gathered as a result of the operators node-spidering
(not from DNS queries) may be freely published or retained, but only
if this data was not made more complete by biasing node connectivity
(a violation of expectation (1)).

	Operators are encouraged, but not required, to publicly document the
details of their operating practices.

	A reachable email contact address must be published for inquiries
related to the DNS seed operation.

If these expectations cannot be satisfied the operator should
discontinue providing services and contact the active Bitcoin
Core development team as well as posting on
bitcoin-dev [https://lists.linuxfoundation.org/mailman/listinfo/bitcoin-dev].

Behavior outside of these expectations may be reasonable in some
situations but should be discussed in public in advance.

See also

	bitcoin-seeder [https://github.com/sipa/bitcoin-seeder] is a reference implementation of a DNS seed.

Fuzz-testing Bitcoin Core

A special test harness test_bitcoin_fuzzy is provided to provide an easy
entry point for fuzzers and the like. In this document we’ll describe how to
use it with AFL.

Building AFL

It is recommended to always use the latest version of afl:

wget http://lcamtuf.coredump.cx/afl/releases/afl-latest.tgz
tar -zxvf afl-latest.tgz
cd afl-<version>
make
export AFLPATH=$PWD

Instrumentation

To build Bitcoin Core using AFL instrumentation (this assumes that the
AFLPATH was set as above):

./configure --disable-ccache --disable-shared --enable-tests CC=${AFLPATH}/afl-gcc CXX=${AFLPATH}/afl-g++
export AFL_HARDEN=1
cd src/
make test/test_bitcoin_fuzzy

We disable ccache because we don’t want to pollute the ccache with instrumented
objects, and similarly don’t want to use non-instrumented cached objects linked
in.

The fuzzing can be sped up significantly (~200x) by using afl-clang-fast and
afl-clang-fast++ in place of afl-gcc and afl-g++ when compiling. When
compiling using afl-clang-fast/afl-clang-fast++ the resulting
test_bitcoin_fuzzy binary will be instrumented in such a way that the AFL
features “persistent mode” and “deferred forkserver” can be used. See
https://github.com/mcarpenter/afl/tree/master/llvm_mode for details.

Preparing fuzzing

AFL needs an input directory with examples, and an output directory where it
will place examples that it found. These can be anywhere in the file system,
we’ll define environment variables to make it easy to reference them.

mkdir inputs
AFLIN=$PWD/inputs
mkdir outputs
AFLOUT=$PWD/outputs

Example inputs are available from:

	https://download.visucore.com/bitcoin/bitcoin_fuzzy_in.tar.xz

	http://strateman.ninja/fuzzing.tar.xz

Extract these (or other starting inputs) into the inputs directory before starting fuzzing.

Fuzzing

To start the actual fuzzing use:

$AFLPATH/afl-fuzz -i ${AFLIN} -o ${AFLOUT} -m52 -- test/test_bitcoin_fuzzy

You may have to change a few kernel parameters to test optimally - afl-fuzz
will print an error and suggestion if so.

Developer Notes

Various coding styles have been used during the history of the codebase,
and the result is not very consistent. However, we’re now trying to converge to
a single style, which is specified below. When writing patches, favor the new
style over attempting to mimic the surrounding style, except for move-only
commits.

Do not submit patches solely to modify the style of existing code.

	Indentation and whitespace rules as specified in
src/.clang-format. You can use the provided
clang-format-diff script
tool to clean up patches automatically before submission.
	Braces on new lines for namespaces, classes, functions, methods.

	Braces on the same line for everything else.

	4 space indentation (no tabs) for every block except namespaces.

	No indentation for public/protected/private or for namespace.

	No extra spaces inside parenthesis; don’t do (this)

	No space after function names; one space after if, for and while.

	If an if only has a single-statement then-clause, it can appear
on the same line as the if, without braces. In every other case,
braces are required, and the then and else clauses must appear
correctly indented on a new line.

	Symbol naming conventions. These are preferred in new code, but are not
required when doing so would need changes to significant pieces of existing
code.
	Variable and namespace names are all lowercase, and may use _ to
separate words (snake_case).
	Class member variables have a m_ prefix.

	Global variables have a g_ prefix.

	Constant names are all uppercase, and use _ to separate words.

	Class names, function names and method names are UpperCamelCase
(PascalCase). Do not prefix class names with C.

	Miscellaneous
	++i is preferred over i++.

	nullptr is preferred over NULL or (void*)0.

	static_assert is preferred over assert where possible. Generally; compile-time checking is preferred over run-time checking.

Block style example:

int g_count = 0;

namespace foo
{
class Class
{
 std::string m_name;

public:
 bool Function(const std::string& s, int n)
 {
 // Comment summarising what this section of code does
 for (int i = 0; i < n; ++i) {
 int total_sum = 0;
 // When something fails, return early
 if (!Something()) return false;
 ...
 if (SomethingElse(i)) {
 total_sum += ComputeSomething(g_count);
 } else {
 DoSomething(m_name, total_sum);
 }
 }

 // Success return is usually at the end
 return true;
 }
}
} // namespace foo

Doxygen comments

To facilitate the generation of documentation, use doxygen-compatible comment blocks for functions, methods and fields.

For example, to describe a function use:

/**
 * ... text ...
 * @param[in] arg1 A description
 * @param[in] arg2 Another argument description
 * @pre Precondition for function...
 */
bool function(int arg1, const char *arg2)

A complete list of @xxx commands can be found at http://www.stack.nl/~dimitri/doxygen/manual/commands.html.
As Doxygen recognizes the comments by the delimiters (/** and */ in this case), you don’t
need to provide any commands for a comment to be valid; just a description text is fine.

To describe a class use the same construct above the class definition:

/**
 * Alerts are for notifying old versions if they become too obsolete and
 * need to upgrade. The message is displayed in the status bar.
 * @see GetWarnings()
 */
class CAlert
{

To describe a member or variable use:

int var; //!< Detailed description after the member

or

//! Description before the member
int var;

Also OK:

///
/// ... text ...
///
bool function2(int arg1, const char *arg2)

Not OK (used plenty in the current source, but not picked up):

//
// ... text ...
//

A full list of comment syntaxes picked up by doxygen can be found at http://www.stack.nl/~dimitri/doxygen/manual/docblocks.html,
but if possible use one of the above styles.

Development tips and tricks

compiling for debugging

Run configure with the –enable-debug option, then make. Or run configure with
CXXFLAGS=”-g -ggdb -O0” or whatever debug flags you need.

debug.log

If the code is behaving strangely, take a look in the debug.log file in the data directory;
error and debugging messages are written there.

The -debug=... command-line option controls debugging; running with just -debug or -debug=1 will turn
on all categories (and give you a very large debug.log file).

The Qt code routes qDebug() output to debug.log under category “qt”: run with -debug=qt
to see it.

testnet and regtest modes

Run with the -testnet option to run with “play bitcoins” on the test network, if you
are testing multi-machine code that needs to operate across the internet.

If you are testing something that can run on one machine, run with the -regtest option.
In regression test mode, blocks can be created on-demand; see test/functional/ for tests
that run in -regtest mode.

DEBUG_LOCKORDER

Bitcoin Core is a multithreaded application, and deadlocks or other multithreading bugs
can be very difficult to track down. Compiling with -DDEBUG_LOCKORDER (configure
CXXFLAGS=”-DDEBUG_LOCKORDER -g”) inserts run-time checks to keep track of which locks
are held, and adds warnings to the debug.log file if inconsistencies are detected.

Locking/mutex usage notes

The code is multi-threaded, and uses mutexes and the
LOCK/TRY_LOCK macros to protect data structures.

Deadlocks due to inconsistent lock ordering (thread 1 locks cs_main
and then cs_wallet, while thread 2 locks them in the opposite order:
result, deadlock as each waits for the other to release its lock) are
a problem. Compile with -DDEBUG_LOCKORDER to get lock order
inconsistencies reported in the debug.log file.

Re-architecting the core code so there are better-defined interfaces
between the various components is a goal, with any necessary locking
done by the components (e.g. see the self-contained CKeyStore class
and its cs_KeyStore lock for example).

Threads

	ThreadScriptCheck : Verifies block scripts.

	ThreadImport : Loads blocks from blk*.dat files or bootstrap.dat.

	StartNode : Starts other threads.

	ThreadDNSAddressSeed : Loads addresses of peers from the DNS.

	ThreadMapPort : Universal plug-and-play startup/shutdown

	ThreadSocketHandler : Sends/Receives data from peers on port 8333.

	ThreadOpenAddedConnections : Opens network connections to added nodes.

	ThreadOpenConnections : Initiates new connections to peers.

	ThreadMessageHandler : Higher-level message handling (sending and receiving).

	DumpAddresses : Dumps IP addresses of nodes to peers.dat.

	ThreadFlushWalletDB : Close the wallet.dat file if it hasn’t been used in 500ms.

	ThreadRPCServer : Remote procedure call handler, listens on port 8332 for connections and services them.

	BitcoinMiner : Generates bitcoins (if wallet is enabled).

	Shutdown : Does an orderly shutdown of everything.

Ignoring IDE/editor files

In closed-source environments in which everyone uses the same IDE it is common
to add temporary files it produces to the project-wide .gitignore file.

However, in open source software such as Bitcoin Core, where everyone uses
their own editors/IDE/tools, it is less common. Only you know what files your
editor produces and this may change from version to version. The canonical way
to do this is thus to create your local gitignore. Add this to ~/.gitconfig:

[core]
 excludesfile = /home/.../.gitignore_global

(alternatively, type the command git config --global core.excludesfile ~/.gitignore_global
on a terminal)

Then put your favourite tool’s temporary filenames in that file, e.g.

NetBeans
nbproject/

Another option is to create a per-repository excludes file .git/info/exclude.
These are not committed but apply only to one repository.

If a set of tools is used by the build system or scripts the repository (for
example, lcov) it is perfectly acceptable to add its files to .gitignore
and commit them.

Development guidelines

A few non-style-related recommendations for developers, as well as points to
pay attention to for reviewers of Bitcoin Core code.

General Bitcoin Core

	New features should be exposed on RPC first, then can be made available in the GUI
	Rationale: RPC allows for better automatic testing. The test suite for
the GUI is very limited

	Make sure pull requests pass Travis CI before merging
	Rationale: Makes sure that they pass thorough testing, and that the tester will keep passing
on the master branch. Otherwise all new pull requests will start failing the tests, resulting in
confusion and mayhem

	Explanation: If the test suite is to be updated for a change, this has to
be done first

Wallet

	Make sure that no crashes happen with run-time option -disablewallet.
	Rationale: In RPC code that conditionally uses the wallet (such as
validateaddress) it is easy to forget that global pointer pwalletMain
can be nullptr. See test/functional/disablewallet.py for functional tests
exercising the API with -disablewallet

	Include db_cxx.h (BerkeleyDB header) only when ENABLE_WALLET is set
	Rationale: Otherwise compilation of the disable-wallet build will fail in environments without BerkeleyDB

General C++

	Assertions should not have side-effects
	Rationale: Even though the source code is set to refuse to compile
with assertions disabled, having side-effects in assertions is unexpected and
makes the code harder to understand

	If you use the .h, you must link the .cpp
	Rationale: Include files define the interface for the code in implementation files. Including one but
not linking the other is confusing. Please avoid that. Moving functions from
the .h to the .cpp should not result in build errors

	Use the RAII (Resource Acquisition Is Initialization) paradigm where possible. For example by using
unique_ptr for allocations in a function.
	Rationale: This avoids memory and resource leaks, and ensures exception safety

C++ data structures

	Never use the std::map [] syntax when reading from a map, but instead use .find()
	Rationale: [] does an insert (of the default element) if the item doesn’t
exist in the map yet. This has resulted in memory leaks in the past, as well as
race conditions (expecting read-read behavior). Using [] is fine for writing to a map

	Do not compare an iterator from one data structure with an iterator of
another data structure (even if of the same type)
	Rationale: Behavior is undefined. In C++ parlor this means “may reformat
the universe”, in practice this has resulted in at least one hard-to-debug crash bug

	Watch out for out-of-bounds vector access. &vch[vch.size()] is illegal,
including &vch[0] for an empty vector. Use vch.data() and vch.data() + vch.size() instead.

	Vector bounds checking is only enabled in debug mode. Do not rely on it

	Make sure that constructors initialize all fields. If this is skipped for a
good reason (i.e., optimization on the critical path), add an explicit
comment about this
	Rationale: Ensure determinism by avoiding accidental use of uninitialized
values. Also, static analyzers balk about this.

	By default, declare single-argument constructors explicit.
	Rationale: This is a precaution to avoid unintended conversions that might
arise when single-argument constructors are used as implicit conversion
functions.

	Use explicitly signed or unsigned chars, or even better uint8_t and
int8_t. Do not use bare char unless it is to pass to a third-party API.
This type can be signed or unsigned depending on the architecture, which can
lead to interoperability problems or dangerous conditions such as
out-of-bounds array accesses

	Prefer explicit constructions over implicit ones that rely on ‘magical’ C++ behavior
	Rationale: Easier to understand what is happening, thus easier to spot mistakes, even for those
that are not language lawyers

Strings and formatting

	Be careful of LogPrint versus LogPrintf. LogPrint takes a category argument, LogPrintf does not.
	Rationale: Confusion of these can result in runtime exceptions due to
formatting mismatch, and it is easy to get wrong because of subtly similar naming

	Use std::string, avoid C string manipulation functions
	Rationale: C++ string handling is marginally safer, less scope for
buffer overflows and surprises with \0 characters. Also some C string manipulations
tend to act differently depending on platform, or even the user locale

	Use ParseInt32, ParseInt64, ParseUInt32, ParseUInt64, ParseDouble from utilstrencodings.h for number parsing
	Rationale: These functions do overflow checking, and avoid pesky locale issues

	For strprintf, LogPrint, LogPrintf formatting characters don’t need size specifiers
	Rationale: Bitcoin Core uses tinyformat, which is type safe. Leave them out to avoid confusion

Variable names

Although the shadowing warning (-Wshadow) is not enabled by default (it prevents issues rising
from using a different variable with the same name),
please name variables so that their names do not shadow variables defined in the source code.

E.g. in member initializers, prepend _ to the argument name shadowing the
member name:

class AddressBookPage
{
 Mode mode;
}

AddressBookPage::AddressBookPage(Mode _mode) :
 mode(_mode)
...

When using nested cycles, do not name the inner cycle variable the same as in
upper cycle etc.

Threads and synchronization

	Build and run tests with -DDEBUG_LOCKORDER to verify that no potential
deadlocks are introduced. As of 0.12, this is defined by default when
configuring with --enable-debug

	When using LOCK/TRY_LOCK be aware that the lock exists in the context of
the current scope, so surround the statement and the code that needs the lock
with braces

OK:

{
 TRY_LOCK(cs_vNodes, lockNodes);
 ...
}

Wrong:

TRY_LOCK(cs_vNodes, lockNodes);
{
 ...
}

Source code organization

	Implementation code should go into the .cpp file and not the .h, unless necessary due to template usage or
when performance due to inlining is critical
	Rationale: Shorter and simpler header files are easier to read, and reduce compile time

	Every .cpp and .h file should #include every header file it directly uses classes, functions or other
definitions from, even if those headers are already included indirectly through other headers. One exception
is that a .cpp file does not need to re-include the includes already included in its corresponding .h file.
	Rationale: Excluding headers because they are already indirectly included results in compilation
failures when those indirect dependencies change. Furthermore, it obscures what the real code
dependencies are.

	Don’t import anything into the global namespace (using namespace ...). Use
fully specified types such as std::string.
	Rationale: Avoids symbol conflicts

	Terminate namespaces with a comment (// namespace mynamespace). The comment
should be placed on the same line as the brace closing the namespace, e.g.

namespace mynamespace {
 ...
} // namespace mynamespace

namespace {
 ...
} // namespace

	Rationale: Avoids confusion about the namespace context

GUI

	Do not display or manipulate dialogs in model code (classes *Model)
	Rationale: Model classes pass through events and data from the core, they
should not interact with the user. That’s where View classes come in. The converse also
holds: try to not directly access core data structures from Views.

Subtrees

Several parts of the repository are subtrees of software maintained elsewhere.

Some of these are maintained by active developers of Bitcoin Core, in which case changes should probably go
directly upstream without being PRed directly against the project. They will be merged back in the next
subtree merge.

Others are external projects without a tight relationship with our project. Changes to these should also
be sent upstream but bugfixes may also be prudent to PR against Bitcoin Core so that they can be integrated
quickly. Cosmetic changes should be purely taken upstream.

There is a tool in contrib/devtools/git-subtree-check.sh to check a subtree directory for consistency with
its upstream repository.

Current subtrees include:

	src/leveldb
	Upstream at https://github.com/google/leveldb ; Maintained by Google, but open important PRs to Core to avoid delay

	src/libsecp256k1
	Upstream at https://github.com/bitcoin-core/secp256k1/ ; actively maintaned by Core contributors.

	src/crypto/ctaes
	Upstream at https://github.com/bitcoin-core/ctaes ; actively maintained by Core contributors.

	src/univalue
	Upstream at https://github.com/jgarzik/univalue ; report important PRs to Core to avoid delay.

Git and GitHub tips

	For resolving merge/rebase conflicts, it can be useful to enable diff3 style using
git config merge.conflictstyle diff3. Instead of

 <<<
 yours
 ===
 theirs
 >>>

you will see

 <<<
 yours
 |||
 original
 ===
 theirs
 >>>

This may make it much clearer what caused the conflict. In this style, you can often just look
at what changed between original and theirs, and mechanically apply that to yours (or the other way around).

	When reviewing patches which change indentation in C++ files, use git diff -w and git show -w. This makes
the diff algorithm ignore whitespace changes. This feature is also available on github.com, by adding ?w=1
at the end of any URL which shows a diff.

	When reviewing patches that change symbol names in many places, use git diff --word-diff. This will instead
of showing the patch as deleted/added lines, show deleted/added words.

	When reviewing patches that move code around, try using
git diff --patience commit~:old/file.cpp commit:new/file/name.cpp, and ignoring everything except the
moved body of code which should show up as neither + or - lines. In case it was not a pure move, this may
even work when combined with the -w or --word-diff options described above.

	When looking at other’s pull requests, it may make sense to add the following section to your .git/config
file:

 [remote "upstream-pull"]
 fetch = +refs/pull/*:refs/remotes/upstream-pull/*
 url = git@github.com:bitcoin/bitcoin.git

This will add an upstream-pull remote to your git repository, which can be fetched using git fetch --all
or git fetch upstream-pull. Afterwards, you can use upstream-pull/NUMBER/head in arguments to git show,
git checkout and anywhere a commit id would be acceptable to see the changes from pull request NUMBER.

Scripted diffs

For reformatting and refactoring commits where the changes can be easily automated using a bash script, we use
scripted-diff commits. The bash script is included in the commit message and our Travis CI job checks that
the result of the script is identical to the commit. This aids reviewers since they can verify that the script
does exactly what it’s supposed to do. It is also helpful for rebasing (since the same script can just be re-run
on the new master commit).

To create a scripted-diff:

	start the commit message with scripted-diff: (and then a description of the diff on the same line)

	in the commit message include the bash script between lines containing just the following text:
	-BEGIN VERIFY SCRIPT-

	-END VERIFY SCRIPT-

The scripted-diff is verified by the tool contrib/devtools/commit-script-check.sh

Commit bb81e173 is an example of a scripted-diff.

RPC interface guidelines

A few guidelines for introducing and reviewing new RPC interfaces:

	Method naming: use consecutive lower-case names such as getrawtransaction and submitblock
	Rationale: Consistency with existing interface.

	Argument naming: use snake case fee_delta (and not, e.g. camel case feeDelta)
	Rationale: Consistency with existing interface.

	Use the JSON parser for parsing, don’t manually parse integers or strings from
arguments unless absolutely necessary.
	Rationale: Introduces hand-rolled string manipulation code at both the caller and callee sites,
which is error prone, and it is easy to get things such as escaping wrong.
JSON already supports nested data structures, no need to re-invent the wheel.

	Exception: AmountFromValue can parse amounts as string. This was introduced because many JSON
parsers and formatters hard-code handling decimal numbers as floating point
values, resulting in potential loss of precision. This is unacceptable for
monetary values. Always use AmountFromValue and ValueFromAmount when
inputting or outputting monetary values. The only exceptions to this are
prioritisetransaction and getblocktemplate because their interface
is specified as-is in BIP22.

	Missing arguments and ‘null’ should be treated the same: as default values. If there is no
default value, both cases should fail in the same way. The easiest way to follow this
guideline is detect unspecified arguments with params[x].isNull() instead of
params.size() <= x. The former returns true if the argument is either null or missing,
while the latter returns true if is missing, and false if it is null.
	Rationale: Avoids surprises when switching to name-based arguments. Missing name-based arguments
are passed as ‘null’.

	Try not to overload methods on argument type. E.g. don’t make getblock(true) and getblock("hash")
do different things.
	Rationale: This is impossible to use with bitcoin-cli, and can be surprising to users.

	Exception: Some RPC calls can take both an int and bool, most notably when a bool was switched
to a multi-value, or due to other historical reasons. Always have false map to 0 and
true to 1 in this case.

	Don’t forget to fill in the argument names correctly in the RPC command table.
	Rationale: If not, the call can not be used with name-based arguments.

	Set okSafeMode in the RPC command table to a sensible value: safe mode is when the
blockchain is regarded to be in a confused state, and the client deems it unsafe to
do anything irreversible such as send. Anything that just queries should be permitted.
	Rationale: Troubleshooting a node in safe mode is difficult if half the
RPCs don’t work.

	Add every non-string RPC argument (method, idx, name) to the table vRPCConvertParams in rpc/client.cpp.
	Rationale: bitcoin-cli and the GUI debug console use this table to determine how to
convert a plaintext command line to JSON. If the types don’t match, the method can be unusable
from there.

	A RPC method must either be a wallet method or a non-wallet method. Do not
introduce new methods such as signrawtransaction that differ in behavior
based on presence of a wallet.
	Rationale: as well as complicating the implementation and interfering
with the introduction of multi-wallet, wallet and non-wallet code should be
separated to avoid introducing circular dependencies between code units.

	Try to make the RPC response a JSON object.
	Rationale: If a RPC response is not a JSON object then it is harder to avoid API breakage if
new data in the response is needed.

Shared Libraries

bitcoinconsensus

The purpose of this library is to make the verification functionality that is critical to Bitcoin’s consensus available to other applications, e.g. to language bindings.

API

The interface is defined in the C header bitcoinconsensus.h located in src/script/bitcoinconsensus.h.

Version

bitcoinconsensus_version returns an unsigned int with the API version (currently at an experimental 0).

Script Validation

bitcoinconsensus_verify_script returns an int with the status of the verification. It will be 1 if the input script correctly spends the previous output scriptPubKey.

Parameters

	const unsigned char *scriptPubKey - The previous output script that encumbers spending.

	unsigned int scriptPubKeyLen - The number of bytes for the scriptPubKey.

	const unsigned char *txTo - The transaction with the input that is spending the previous output.

	unsigned int txToLen - The number of bytes for the txTo.

	unsigned int nIn - The index of the input in txTo that spends the scriptPubKey.

	unsigned int flags - The script validation flags (see below).

	bitcoinconsensus_error* err - Will have the error/success code for the operation (see below).

Script Flags

	bitcoinconsensus_SCRIPT_FLAGS_VERIFY_NONE

	bitcoinconsensus_SCRIPT_FLAGS_VERIFY_P2SH - Evaluate P2SH (BIP16 [https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki]) subscripts

	bitcoinconsensus_SCRIPT_FLAGS_VERIFY_DERSIG - Enforce strict DER (BIP66 [https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki]) compliance

	bitcoinconsensus_SCRIPT_FLAGS_VERIFY_NULLDUMMY - Enforce NULLDUMMY (BIP147 [https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki])

	bitcoinconsensus_SCRIPT_FLAGS_VERIFY_CHECKLOCKTIMEVERIFY - Enable CHECKLOCKTIMEVERIFY (BIP65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki])

	bitcoinconsensus_SCRIPT_FLAGS_VERIFY_CHECKSEQUENCEVERIFY - Enable CHECKSEQUENCEVERIFY (BIP112 [https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki])

	bitcoinconsensus_SCRIPT_FLAGS_VERIFY_WITNESS - Enable WITNESS (BIP141 [https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki])

Errors

	bitcoinconsensus_ERR_OK - No errors with input parameters (see the return value of bitcoinconsensus_verify_script for the verification status)

	bitcoinconsensus_ERR_TX_INDEX - An invalid index for txTo

	bitcoinconsensus_ERR_TX_SIZE_MISMATCH - txToLen did not match with the size of txTo

	bitcoinconsensus_ERR_DESERIALIZE - An error deserializing txTo

	bitcoinconsensus_ERR_AMOUNT_REQUIRED - Input amount is required if WITNESS is used

Example Implementations

	NBitcoin [https://github.com/NicolasDorier/NBitcoin/blob/master/NBitcoin/Script.cs#L814] (.NET Bindings)

	node-libbitcoinconsensus [https://github.com/bitpay/node-libbitcoinconsensus] (Node.js Bindings)

	java-libbitcoinconsensus [https://github.com/dexX7/java-libbitcoinconsensus] (Java Bindings)

	bitcoinconsensus-php [https://github.com/Bit-Wasp/bitcoinconsensus-php] (PHP Bindings)

TOR SUPPORT IN BITCOIN

It is possible to run Bitcoin as a Tor hidden service, and connect to such services.

The following directions assume you have a Tor proxy running on port 9050. Many distributions default to having a SOCKS proxy listening on port 9050, but others may not. In particular, the Tor Browser Bundle defaults to listening on port 9150. See Tor Project FAQ:TBBSocksPort [https://www.torproject.org/docs/faq.html.en#TBBSocksPort] for how to properly
configure Tor.

	Run bitcoin behind a Tor proxy

The first step is running Bitcoin behind a Tor proxy. This will already make all
outgoing connections be anonymized, but more is possible.

-proxy=ip:port Set the proxy server. If SOCKS5 is selected (default), this proxy
 server will be used to try to reach .onion addresses as well.

-onion=ip:port Set the proxy server to use for tor hidden services. You do not
 need to set this if it's the same as -proxy. You can use -noonion
 to explicitly disable access to hidden service.

-listen When using -proxy, listening is disabled by default. If you want
 to run a hidden service (see next section), you'll need to enable
 it explicitly.

-connect=X When behind a Tor proxy, you can specify .onion addresses instead
-addnode=X of IP addresses or hostnames in these parameters. It requires
-seednode=X SOCKS5. In Tor mode, such addresses can also be exchanged with
 other P2P nodes.

In a typical situation, this suffices to run behind a Tor proxy:

./bitcoin -proxy=127.0.0.1:9050

	Run a bitcoin hidden server

If you configure your Tor system accordingly, it is possible to make your node also
reachable from the Tor network. Add these lines to your /etc/tor/torrc (or equivalent
config file):

HiddenServiceDir /var/lib/tor/bitcoin-service/
HiddenServicePort 8333 127.0.0.1:8333
HiddenServicePort 18333 127.0.0.1:18333

The directory can be different of course, but (both) port numbers should be equal to
your bitcoind’s P2P listen port (8333 by default).

-externalip=X You can tell bitcoin about its publicly reachable address using
 this option, and this can be a .onion address. Given the above
 configuration, you can find your onion address in
 /var/lib/tor/bitcoin-service/hostname. Onion addresses are given
 preference for your node to advertise itself with, for connections
 coming from unroutable addresses (such as 127.0.0.1, where the
 Tor proxy typically runs).

-listen You'll need to enable listening for incoming connections, as this
 is off by default behind a proxy.

-discover When -externalip is specified, no attempt is made to discover local
 IPv4 or IPv6 addresses. If you want to run a dual stack, reachable
 from both Tor and IPv4 (or IPv6), you'll need to either pass your
 other addresses using -externalip, or explicitly enable -discover.
 Note that both addresses of a dual-stack system may be easily
 linkable using traffic analysis.

In a typical situation, where you’re only reachable via Tor, this should suffice:

./bitcoind -proxy=127.0.0.1:9050 -externalip=57qr3yd1nyntf5k.onion -listen

(obviously, replace the Onion address with your own). It should be noted that you still
listen on all devices and another node could establish a clearnet connection, when knowing
your address. To mitigate this, additionally bind the address of your Tor proxy:

./bitcoind ... -bind=127.0.0.1

If you don’t care too much about hiding your node, and want to be reachable on IPv4
as well, use discover instead:

./bitcoind ... -discover

and open port 8333 on your firewall (or use -upnp).

If you only want to use Tor to reach onion addresses, but not use it as a proxy
for normal IPv4/IPv6 communication, use:

./bitcoin -onion=127.0.0.1:9050 -externalip=57qr3yd1nyntf5k.onion -discover

	Automatically listen on Tor

Starting with Tor version 0.2.7.1 it is possible, through Tor’s control socket
API, to create and destroy ‘ephemeral’ hidden services programmatically.
Bitcoin Core has been updated to make use of this.

This means that if Tor is running (and proper authentication has been configured),
Bitcoin Core automatically creates a hidden service to listen on. This will positively
affect the number of available .onion nodes.

This new feature is enabled by default if Bitcoin Core is listening (-listen), and
requires a Tor connection to work. It can be explicitly disabled with -listenonion=0
and, if not disabled, configured using the -torcontrol and -torpassword settings.
To show verbose debugging information, pass -debug=tor.

Connecting to Tor’s control socket API requires one of two authentication methods to be
configured. For cookie authentication the user running bitcoind must have write access
to the CookieAuthFile specified in Tor configuration. In some cases this is
preconfigured and the creation of a hidden service is automatic. If permission problems
are seen with -debug=tor they can be resolved by adding both the user running tor and
the user running bitcoind to the same group and setting permissions appropriately. On
Debian-based systems the user running bitcoind can be added to the debian-tor group,
which has the appropriate permissions. An alternative authentication method is the use
of the -torpassword flag and a hash-password which can be enabled and specified in
Tor configuration.

	Privacy recommendations

	Do not add anything but bitcoin ports to the hidden service created in section 2.
If you run a web service too, create a new hidden service for that.
Otherwise it is trivial to link them, which may reduce privacy. Hidden
services created automatically (as in section 3) always have only one port
open.

Dependencies

These are the dependencies currently used by Bitcoin Core. You can find instructions for installing them in the build-*.md file for your platform.

Dependency	Version used	Minimum required	CVEs	Shared	Bundled Qt library [https://doc.qt.io/qt-5/configure-options.html]
—	—	—	—	—	—
Berkeley DB	4.8.30 [http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/downloads/index.html]	4.8.x	No		
Boost	1.64.0 [http://www.boost.org/users/download/]	1.47.0 [https://github.com/bitcoin/bitcoin/pull/8920]	No		
ccache	3.3.4 [https://ccache.samba.org/download.html]		No		
Clang		3.3+ [http://llvm.org/releases/download.html] (C++11 support)			
D-Bus	1.10.18 [https://cgit.freedesktop.org/dbus/dbus/tree/NEWS?h=dbus-1.10]		No	Yes	
Expat	2.2.1 [https://libexpat.github.io/]		No	Yes	
fontconfig	2.12.1 [https://www.freedesktop.org/software/fontconfig/release/]		No	Yes	
FreeType	2.7.1 [http://download.savannah.gnu.org/releases/freetype]		No		
GCC		4.7+ [https://gcc.gnu.org/]			
HarfBuzz-NG					
libevent	2.1.8-stable [https://github.com/libevent/libevent/releases]	2.0.22	No		
libjpeg					Yes [https://github.com/bitcoin/bitcoin/blob/master/depends/packages/qt.mk#L75]
libpng					Yes [https://github.com/bitcoin/bitcoin/blob/master/depends/packages/qt.mk#L74]
MiniUPnPc	2.0.20170509 [http://miniupnp.free.fr/files]		No		
OpenSSL	1.0.1k [https://www.openssl.org/source]		Yes		
PCRE					Yes [https://github.com/bitcoin/bitcoin/blob/master/depends/packages/qt.mk#L76]
protobuf	2.6.3 [https://github.com/google/protobuf/releases]		No		
Python (tests)		3.4 [https://www.python.org/downloads]			
qrencode	3.4.4 [https://fukuchi.org/works/qrencode]		No		
Qt	5.7.1 [https://download.qt.io/official_releases/qt/]	4.7+	No		
XCB					Yes [https://github.com/bitcoin/bitcoin/blob/master/depends/packages/qt.mk#L94] (Linux only)
xkbcommon					Yes [https://github.com/bitcoin/bitcoin/blob/master/depends/packages/qt.mk#L93] (Linux only)
ZeroMQ	4.1.5 [https://github.com/zeromq/libzmq/releases]		No		
zlib	1.2.11 [http://zlib.net/]				No

Sample init scripts and service configuration for bitcoind

Sample scripts and configuration files for systemd, Upstart and OpenRC
can be found in the contrib/init folder.

contrib/init/bitcoind.service: systemd service unit configuration
contrib/init/bitcoind.openrc: OpenRC compatible SysV style init script
contrib/init/bitcoind.openrcconf: OpenRC conf.d file
contrib/init/bitcoind.conf: Upstart service configuration file
contrib/init/bitcoind.init: CentOS compatible SysV style init script

Service User

All three Linux startup configurations assume the existence of a “bitcoin” user
and group. They must be created before attempting to use these scripts.
The OS X configuration assumes bitcoind will be set up for the current user.

Configuration

At a bare minimum, bitcoind requires that the rpcpassword setting be set
when running as a daemon. If the configuration file does not exist or this
setting is not set, bitcoind will shutdown promptly after startup.

This password does not have to be remembered or typed as it is mostly used
as a fixed token that bitcoind and client programs read from the configuration
file, however it is recommended that a strong and secure password be used
as this password is security critical to securing the wallet should the
wallet be enabled.

If bitcoind is run with the “-server” flag (set by default), and no rpcpassword is set,
it will use a special cookie file for authentication. The cookie is generated with random
content when the daemon starts, and deleted when it exits. Read access to this file
controls who can access it through RPC.

By default the cookie is stored in the data directory, but it’s location can be overridden
with the option ‘-rpccookiefile’.

This allows for running bitcoind without having to do any manual configuration.

conf, pid, and wallet accept relative paths which are interpreted as
relative to the data directory. wallet only supports relative paths.

For an example configuration file that describes the configuration settings,
see contrib/debian/examples/bitcoin.conf.

Paths

Linux

All three configurations assume several paths that might need to be adjusted.

Binary: /usr/bin/bitcoindConfiguration file: /etc/bitcoin/bitcoin.confData directory: /var/lib/bitcoindPID file: /var/run/bitcoind/bitcoind.pid (OpenRC and Upstart) or /var/lib/bitcoind/bitcoind.pid (systemd)Lock file: /var/lock/subsys/bitcoind (CentOS)

The configuration file, PID directory (if applicable) and data directory
should all be owned by the bitcoin user and group. It is advised for security
reasons to make the configuration file and data directory only readable by the
bitcoin user and group. Access to bitcoin-cli and other bitcoind rpc clients
can then be controlled by group membership.

Mac OS X

Binary: /usr/local/bin/bitcoindConfiguration file: ~/Library/Application Support/Bitcoin/bitcoin.confData directory: ~/Library/Application Support/BitcoinLock file: ~/Library/Application Support/Bitcoin/.lock

Installing Service Configuration

systemd

Installing this .service file consists of just copying it to
/usr/lib/systemd/system directory, followed by the command
systemctl daemon-reload in order to update running systemd configuration.

To test, run systemctl start bitcoind and to enable for system startup run
systemctl enable bitcoind

OpenRC

Rename bitcoind.openrc to bitcoind and drop it in /etc/init.d. Double
check ownership and permissions and make it executable. Test it with
/etc/init.d/bitcoind start and configure it to run on startup with
rc-update add bitcoind

Upstart (for Debian/Ubuntu based distributions)

Drop bitcoind.conf in /etc/init. Test by running service bitcoind start
it will automatically start on reboot.

NOTE: This script is incompatible with CentOS 5 and Amazon Linux 2014 as they
use old versions of Upstart and do not supply the start-stop-daemon utility.

CentOS

Copy bitcoind.init to /etc/init.d/bitcoind. Test by running service bitcoind start.

Using this script, you can adjust the path and flags to the bitcoind program by
setting the BITCOIND and FLAGS environment variables in the file
/etc/sysconfig/bitcoind. You can also use the DAEMONOPTS environment variable here.

Mac OS X

Copy org.bitcoin.bitcoind.plist into ~/Library/LaunchAgents. Load the launch agent by
running launchctl load ~/Library/LaunchAgents/org.bitcoin.bitcoind.plist.

This Launch Agent will cause bitcoind to start whenever the user logs in.

NOTE: This approach is intended for those wanting to run bitcoind as the current user.
You will need to modify org.bitcoin.bitcoind.plist if you intend to use it as a
Launch Daemon with a dedicated bitcoin user.

Auto-respawn

Auto respawning is currently only configured for Upstart and systemd.
Reasonable defaults have been chosen but YMMV.

	banlist.dat: stores the IPs/Subnets of banned nodes

	bitcoin.conf: contains configuration settings for bitcoind or bitcoin-qt

	bitcoind.pid: stores the process id of bitcoind while running

	blocks/blk000??.dat: block data (custom, 128 MiB per file); since 0.8.0

	blocks/rev000??.dat; block undo data (custom); since 0.8.0 (format changed since pre-0.8)

	blocks/index/*; block index (LevelDB); since 0.8.0

	chainstate/*; block chain state database (LevelDB); since 0.8.0

	database/*: BDB database environment; only used for wallet since 0.8.0

	db.log: wallet database log file

	debug.log: contains debug information and general logging generated by bitcoind or bitcoin-qt

	fee_estimates.dat: stores statistics used to estimate minimum transaction fees and priorities required for confirmation; since 0.10.0

	mempool.dat: dump of the mempool’s transactions; since 0.14.0.

	peers.dat: peer IP address database (custom format); since 0.7.0

	wallet.dat: personal wallet (BDB) with keys and transactions

	.cookie: session RPC authentication cookie (written at start when cookie authentication is used, deleted on shutdown): since 0.12.0

	onion_private_key: cached Tor hidden service private key for -listenonion: since 0.12.0

	guisettings.ini.bak: backup of former GUI settings after -resetguisettings is used

Only used in pre-0.8.0

	blktree/; block chain index (LevelDB); since pre-0.8, replaced by blocks/index/ in 0.8.0

	coins/; unspent transaction output database (LevelDB); since pre-0.8, replaced by chainstate/ in 0.8.0

Only used before 0.8.0

	blkindex.dat: block chain index database (BDB); replaced by {chainstate/,blocks/index/,blocks/rev000??.dat} in 0.8.0

	blk000?.dat: block data (custom, 2 GiB per file); replaced by blocks/blk000??.dat in 0.8.0

Only used before 0.7.0

	addr.dat: peer IP address database (BDB); replaced by peers.dat in 0.7.0

Translation Strings Policy

This document provides guidelines for internationalization of the Bitcoin Core software.

How to translate?

To mark a message as translatable

	In GUI source code (under src/qt): use tr("...")

	In non-GUI source code (under src): use _("...")

No internationalization is used for e.g. developer scripts outside src.

Strings to be translated

On a high level, these strings are to be translated:

	GUI strings, anything that appears in a dialog or window

	Command-line option documentation

GUI strings

Anything that appears to the user in the GUI is to be translated. This includes labels, menu items, button texts, tooltips and window titles.
This includes messages passed to the GUI through the UI interface through InitMessage, ThreadSafeMessageBox or ShowProgress.

Command-line options

Documentation for the command line options in the output of --help should be translated as well.

Make sure that default values do not end up in the string, but use string formatting like strprintf(_("Threshold for disconnecting misbehaving peers (default: %u)"), 100). Putting default values in strings has led to accidental translations in the past, and forces the string to be retranslated every time the value changes.

Do not translate messages that are only shown to developers, such as those that only appear when --help-debug is used.

General recommendations

Avoid unnecessary translation strings

Try not to burden translators with translating messages that are e.g. slight variations of other messages.
In the GUI, avoid the use of text where an icon or symbol will do.
Make sure that placeholder texts in forms don’t end up in the list of strings to be translated (use <string notr="true">).

Make translated strings understandable

Try to write translation strings in an understandable way, for both the user and the translator. Avoid overly technical or detailed messages

Do not translate internal errors

Do not translate internal errors, or log messages, or messages that appear on the RPC interface. If an error is to be shown to the user,
use a translatable generic message, then log the detailed message to the log. E.g. “A fatal internal error occurred, see debug.log for details”.
This helps troubleshooting; if the error is the same for everyone, the likelihood is increased that it can be found using a search engine.

Avoid fragments

Avoid dividing up a message into fragments. Translators see every string separately, so may misunderstand the context if the messages are not self-contained.

Avoid HTML in translation strings

There have been difficulties with use of HTML in translation strings; translators should not be able to accidentally affect the formatting of messages.
This may sometimes be at conflict with the recommendation in the previous section.

Plurals

Plurals can be complex in some languages. A quote from the gettext documentation:

In Polish we use e.g. plik (file) this way:
1 plik,
2,3,4 pliki,
5-21 pliko'w,
22-24 pliki,
25-31 pliko'w
and so on

In Qt code use tr’s third argument for optional plurality. For example:

tr("%n hour(s)","",secs/HOUR_IN_SECONDS);
tr("%n day(s)","",secs/DAY_IN_SECONDS);
tr("%n week(s)","",secs/WEEK_IN_SECONDS);

This adds <numerusform>s to the respective .ts file, which can be translated separately depending on the language. In English, this is simply:

<message numerus="yes">
 <source>%n active connection(s) to Bitcoin network</source>
 <translation>
 <numerusform>%n active connection to Bitcoin network</numerusform>
 <numerusform>%n active connections to Bitcoin network</numerusform>
 </translation>
</message>

Where it is possible try to avoid embedding numbers into the flow of the string at all. e.g.

WARNING: check your network connection, %d blocks received in the last %d hours (%d expected)

versus

WARNING: check your network connection, less blocks (%d) were received in the last %n hours than expected (%d).

The second example reduces the number of pluralized words that translators have to handle from three to one, at no cost to comprehensibility of the sentence.

String freezes

During a string freeze (often before a major release), no translation strings are to be added, modified or removed.

This can be checked by executing make translate in the src directory, then verifying that bitcoin_en.ts remains unchanged.

Mac OS X Build Instructions and Notes

The commands in this guide should be executed in a Terminal application.
The built-in one is located in /Applications/Utilities/Terminal.app.

Preparation

Install the OS X command line tools:

xcode-select --install

When the popup appears, click Install.

Then install Homebrew [https://brew.sh].

Dependencies

brew install automake berkeley-db4 libtool boost --c++11 miniupnpc openssl pkg-config protobuf python3 qt libevent

See dependencies.md for a complete overview.

If you want to build the disk image with make deploy (.dmg / optional), you need RSVG

brew install librsvg

NOTE: Building with Qt4 is still supported, however, could result in a broken UI. Building with Qt5 is recommended.

Build Bitcoin Core

	Clone the bitcoin source code and cd into bitcoin

 git clone https://github.com/bitcoin/bitcoin
 cd bitcoin

	Build bitcoin-core:

Configure and build the headless bitcoin binaries as well as the GUI (if Qt is found).

You can disable the GUI build by passing --without-gui to configure.

./autogen.sh
./configure
make

	It is recommended to build and run the unit tests:

make check

	You can also create a .dmg that contains the .app bundle (optional):

make deploy

Running

Bitcoin Core is now available at ./src/bitcoind

Before running, it’s recommended you create an RPC configuration file.

echo -e "rpcuser=bitcoinrpc\nrpcpassword=$(xxd -l 16 -p /dev/urandom)" > "/Users/${USER}/Library/Application Support/Bitcoin/bitcoin.conf"

chmod 600 "/Users/${USER}/Library/Application Support/Bitcoin/bitcoin.conf"

The first time you run bitcoind, it will start downloading the blockchain. This process could take several hours.

You can monitor the download process by looking at the debug.log file:

tail -f $HOME/Library/Application\ Support/Bitcoin/debug.log

Other commands:

./src/bitcoind -daemon # Starts the bitcoin daemon.
./src/bitcoin-cli --help # Outputs a list of command-line options.
./src/bitcoin-cli help # Outputs a list of RPC commands when the daemon is running.

Using Qt Creator as IDE

You can use Qt Creator as an IDE, for bitcoin development.
Download and install the community edition of Qt Creator [https://www.qt.io/download/].
Uncheck everything except Qt Creator during the installation process.

	Make sure you installed everything through Homebrew mentioned above

	Do a proper ./configure –enable-debug

	In Qt Creator do “New Project” -> Import Project -> Import Existing Project

	Enter “bitcoin-qt” as project name, enter src/qt as location

	Leave the file selection as it is

	Confirm the “summary page”

	In the “Projects” tab select “Manage Kits...”

	Select the default “Desktop” kit and select “Clang (x86 64bit in /usr/bin)” as compiler

	Select LLDB as debugger (you might need to set the path to your installation)

	Start debugging with Qt Creator

Notes

	Tested on OS X 10.8 through 10.12 on 64-bit Intel processors only.

	Building with downloaded Qt binaries is not officially supported. See the notes in #7714 [https://github.com/bitcoin/bitcoin/issues/7714]

 BIPs that are implemented by Bitcoin Core (up-to-date up to v0.13.0):

	BIP 9 [https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki]: The changes allowing multiple soft-forks to be deployed in parallel have been implemented since v0.12.1 (PR #7575 [https://github.com/bitcoin/bitcoin/pull/7575])

	BIP 11 [https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki]: Multisig outputs are standard since v0.6.0 (PR #669 [https://github.com/bitcoin/bitcoin/pull/669]).

	BIP 13 [https://github.com/bitcoin/bips/blob/master/bip-0013.mediawiki]: The address format for P2SH addresses has been implemented since v0.6.0 (PR #669 [https://github.com/bitcoin/bitcoin/pull/669]).

	BIP 14 [https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki]: The subversion string is being used as User Agent since v0.6.0 (PR #669 [https://github.com/bitcoin/bitcoin/pull/669]).

	BIP 16 [https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki]: The pay-to-script-hash evaluation rules have been implemented since v0.6.0, and took effect on April 1st 2012 (PR #748 [https://github.com/bitcoin/bitcoin/pull/748]).

	BIP 21 [https://github.com/bitcoin/bips/blob/master/bip-0021.mediawiki]: The URI format for Bitcoin payments has been implemented since v0.6.0 (PR #176 [https://github.com/bitcoin/bitcoin/pull/176]).

	BIP 22 [https://github.com/bitcoin/bips/blob/master/bip-0022.mediawiki]: The ‘getblocktemplate’ (GBT) RPC protocol for mining has been implemented since v0.7.0 (PR #936 [https://github.com/bitcoin/bitcoin/pull/936]).

	BIP 23 [https://github.com/bitcoin/bips/blob/master/bip-0023.mediawiki]: Some extensions to GBT have been implemented since v0.10.0rc1, including longpolling and block proposals (PR #1816 [https://github.com/bitcoin/bitcoin/pull/1816]).

	BIP 30 [https://github.com/bitcoin/bips/blob/master/bip-0030.mediawiki]: The evaluation rules to forbid creating new transactions with the same txid as previous not-fully-spent transactions were implemented since v0.6.0, and the rule took effect on March 15th 2012 (PR #915 [https://github.com/bitcoin/bitcoin/pull/915]).

	BIP 31 [https://github.com/bitcoin/bips/blob/master/bip-0031.mediawiki]: The ‘pong’ protocol message (and the protocol version bump to 60001) has been implemented since v0.6.1 (PR #1081 [https://github.com/bitcoin/bitcoin/pull/1081]).

	BIP 32 [https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki]: Hierarchical Deterministic Wallets has been implemented since v0.13.0 (PR #8035 [https://github.com/bitcoin/bitcoin/pull/8035]).

	BIP 34 [https://github.com/bitcoin/bips/blob/master/bip-0034.mediawiki]: The rule that requires blocks to contain their height (number) in the coinbase input, and the introduction of version 2 blocks has been implemented since v0.7.0. The rule took effect for version 2 blocks as of block 224413 (March 5th 2013), and version 1 blocks are no longer allowed since block 227931 (March 25th 2013) (PR #1526 [https://github.com/bitcoin/bitcoin/pull/1526]).

	BIP 35 [https://github.com/bitcoin/bips/blob/master/bip-0035.mediawiki]: The ‘mempool’ protocol message (and the protocol version bump to 60002) has been implemented since v0.7.0 (PR #1641 [https://github.com/bitcoin/bitcoin/pull/1641]).

	BIP 37 [https://github.com/bitcoin/bips/blob/master/bip-0037.mediawiki]: The bloom filtering for transaction relaying, partial merkle trees for blocks, and the protocol version bump to 70001 (enabling low-bandwidth SPV clients) has been implemented since v0.8.0 (PR #1795 [https://github.com/bitcoin/bitcoin/pull/1795]).

	BIP 42 [https://github.com/bitcoin/bips/blob/master/bip-0042.mediawiki]: The bug that would have caused the subsidy schedule to resume after block 13440000 was fixed in v0.9.2 (PR #3842 [https://github.com/bitcoin/bitcoin/pull/3842]).

	BIP 61 [https://github.com/bitcoin/bips/blob/master/bip-0061.mediawiki]: The ‘reject’ protocol message (and the protocol version bump to 70002) was added in v0.9.0 (PR #3185 [https://github.com/bitcoin/bitcoin/pull/3185]).

	BIP 65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki]: The CHECKLOCKTIMEVERIFY softfork was merged in v0.12.0 (PR #6351 [https://github.com/bitcoin/bitcoin/pull/6351]), and backported to v0.11.2 and v0.10.4. Mempool-only CLTV was added in PR #6124 [https://github.com/bitcoin/bitcoin/pull/6124].

	BIP 66 [https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki]: The strict DER rules and associated version 3 blocks have been implemented since v0.10.0 (PR #5713 [https://github.com/bitcoin/bitcoin/pull/5713]).

	BIP 68 [https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki]: Sequence locks have been implemented as of v0.12.1 (PR #7184 [https://github.com/bitcoin/bitcoin/pull/7184]), and have been activated since block 419328.

	BIP 70 [https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki] 71 [https://github.com/bitcoin/bips/blob/master/bip-0071.mediawiki] 72 [https://github.com/bitcoin/bips/blob/master/bip-0072.mediawiki]: Payment Protocol support has been available in Bitcoin Core GUI since v0.9.0 (PR #5216 [https://github.com/bitcoin/bitcoin/pull/5216]).

	BIP 90 [https://github.com/bitcoin/bips/blob/master/bip-0090.mediawiki]: Trigger mechanism for activation of BIPs 34, 65, and 66 has been simplified to block height checks since v0.14.0 (PR #8391 [https://github.com/bitcoin/bitcoin/pull/8391]).

	BIP 111 [https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki]: NODE_BLOOM service bit added, and enforced for all peer versions as of v0.13.0 (PR #6579 [https://github.com/bitcoin/bitcoin/pull/6579] and PR #6641 [https://github.com/bitcoin/bitcoin/pull/6641]).

	BIP 112 [https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki]: The CHECKSEQUENCEVERIFY opcode has been implemented since v0.12.1 (PR #7524 [https://github.com/bitcoin/bitcoin/pull/7524]) and has been activated since block 419328.

	BIP 113 [https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki]: Median time past lock-time calculations have been implemented since v0.12.1 (PR #6566 [https://github.com/bitcoin/bitcoin/pull/6566]) and have been activated since block 419328.

	BIP 125 [https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki]: Opt-in full replace-by-fee signaling honoured in mempool and mining as of v0.12.0 (PR 6871 [https://github.com/bitcoin/bitcoin/pull/6871]).

	BIP 130 [https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki]: direct headers announcement is negotiated with peer versions >=70012 as of v0.12.0 (PR 6494 [https://github.com/bitcoin/bitcoin/pull/6494]).

	BIP 133 [https://github.com/bitcoin/bips/blob/master/bip-0133.mediawiki]: feefilter messages are respected and sent for peer versions >=70013 as of v0.13.0 (PR 7542 [https://github.com/bitcoin/bitcoin/pull/7542]).

	BIP 141 [https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki]: Segregated Witness (Consensus Layer) as of v0.13.0 (PR 8149 [https://github.com/bitcoin/bitcoin/pull/8149]), and defined for mainnet as of v0.13.1 (PR 8937 [https://github.com/bitcoin/bitcoin/pull/8937]).

	BIP 143 [https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki]: Transaction Signature Verification for Version 0 Witness Program as of v0.13.0 (PR 8149 [https://github.com/bitcoin/bitcoin/pull/8149]) and defined for mainnet as of v0.13.1 (PR 8937 [https://github.com/bitcoin/bitcoin/pull/8937]).

	BIP 144 [https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki]: Segregated Witness as of 0.13.0 (PR 8149 [https://github.com/bitcoin/bitcoin/pull/8149]).

	BIP 145 [https://github.com/bitcoin/bips/blob/master/bip-0145.mediawiki]: getblocktemplate updates for Segregated Witness as of v0.13.0 (PR 8149 [https://github.com/bitcoin/bitcoin/pull/8149]).

	BIP 147 [https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki]: NULLDUMMY softfork as of v0.13.1 (PR 8636 [https://github.com/bitcoin/bitcoin/pull/8636] and PR 8937 [https://github.com/bitcoin/bitcoin/pull/8937]).

	BIP 152 [https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki]: Compact block transfer and related optimizations are used as of v0.13.0 (PR 8068 [https://github.com/bitcoin/bitcoin/pull/8068]).

OpenBSD build guide

(updated for OpenBSD 6.1)

This guide describes how to build bitcoind and command-line utilities on OpenBSD.

As OpenBSD is most common as a server OS, we will not bother with the GUI.

Preparation

Run the following as root to install the base dependencies for building:

pkg_add gmake libtool libevent
pkg_add autoconf # (select highest version, e.g. 2.69)
pkg_add automake # (select highest version, e.g. 1.15)
pkg_add python # (select highest version, e.g. 3.5)

See dependencies.md for a complete overview.

GCC

The default C++ compiler that comes with OpenBSD 5.9 is g++ 4.2. This version is old (from 2007), and is not able to compile the current version of Bitcoin Core, primarily as it has no C++11 support, but even before there were issues. So here we will be installing a newer compiler:

pkg_add g++ # (select newest 4.x version, e.g. 4.9.3)

This compiler will not overwrite the system compiler, it will be installed as egcc and eg++ in /usr/local/bin.

Building boost

Do not use pkg_add boost! The boost version installed thus is compiled using the g++ compiler not eg++, which will result in a conflict between /usr/local/lib/libestdc++.so.XX.0 and /usr/lib/libstdc++.so.XX.0, resulting in a test crash:

test_bitcoin:/usr/lib/libstdc++.so.57.0: /usr/local/lib/libestdc++.so.17.0 : WARNING: symbol(_ZN11__gnu_debug17_S_debug_me ssagesE) size mismatch, relink your program
...
Segmentation fault (core dumped)

This makes it necessary to build boost, or at least the parts used by Bitcoin Core, manually:

Pick some path to install boost to, here we create a directory within the bitcoin directory
BITCOIN_ROOT=$(pwd)
BOOST_PREFIX="${BITCOIN_ROOT}/boost"
mkdir -p $BOOST_PREFIX

Fetch the source and verify that it is not tampered with
curl -o boost_1_64_0.tar.bz2 https://netcologne.dl.sourceforge.net/project/boost/boost/1.64.0/boost_1_64_0.tar.bz2
echo '7bcc5caace97baa948931d712ea5f37038dbb1c5d89b43ad4def4ed7cb683332 boost_1_64_0.tar.bz2' | sha256 -c
MUST output: (SHA256) boost_1_64_0.tar.bz2: OK
tar -xjf boost_1_64_0.tar.bz2

Boost 1.64 needs one small patch for OpenBSD
cd boost_1_64_0
Also here: https://gist.githubusercontent.com/laanwj/bf359281dc319b8ff2e1/raw/92250de8404b97bb99d72ab898f4a8cb35ae1ea3/patch-boost_test_impl_execution_monitor_ipp.patch
patch -p0 < /usr/ports/devel/boost/patches/patch-boost_test_impl_execution_monitor_ipp

Build w/ minimum configuration necessary for bitcoin
echo 'using gcc : : eg++ : <cxxflags>"-fvisibility=hidden -fPIC" <linkflags>"" <archiver>"ar" <striper>"strip" <ranlib>"ranlib" <rc>"" : ;' > user-config.jam
config_opts="runtime-link=shared threadapi=pthread threading=multi link=static variant=release --layout=tagged --build-type=complete --user-config=user-config.jam -sNO_BZIP2=1"
./bootstrap.sh --without-icu --with-libraries=chrono,filesystem,program_options,system,thread,test
./b2 -d2 -j2 -d1 ${config_opts} --prefix=${BOOST_PREFIX} stage
./b2 -d0 -j4 ${config_opts} --prefix=${BOOST_PREFIX} install

Building BerkeleyDB

BerkeleyDB is only necessary for the wallet functionality. To skip this, pass --disable-wallet to ./configure.

See “Berkeley DB” in build_unix.md for instructions on how to build BerkeleyDB 4.8.
You cannot use the BerkeleyDB library from ports, for the same reason as boost above (g++/libstd++ incompatibility).

Pick some path to install BDB to, here we create a directory within the bitcoin directory
BITCOIN_ROOT=$(pwd)
BDB_PREFIX="${BITCOIN_ROOT}/db4"
mkdir -p $BDB_PREFIX

Fetch the source and verify that it is not tampered with
curl -o db-4.8.30.NC.tar.gz 'http://download.oracle.com/berkeley-db/db-4.8.30.NC.tar.gz'
echo '12edc0df75bf9abd7f82f821795bcee50f42cb2e5f76a6a281b85732798364ef db-4.8.30.NC.tar.gz' | sha256 -c
MUST output: (SHA256) db-4.8.30.NC.tar.gz: OK
tar -xzf db-4.8.30.NC.tar.gz

Build the library and install to specified prefix
cd db-4.8.30.NC/build_unix/
Note: Do a static build so that it can be embedded into the executable, instead of having to find a .so at runtime
../dist/configure --enable-cxx --disable-shared --with-pic --prefix=$BDB_PREFIX CC=egcc CXX=eg++ CPP=ecpp
make install # do NOT use -jX, this is broken

Resource limits

The standard ulimit restrictions in OpenBSD are very strict:

data(kbytes) 1572864

This is, unfortunately, no longer enough to compile some .cpp files in the project,
at least with gcc 4.9.3 (see issue https://github.com/bitcoin/bitcoin/issues/6658).
If your user is in the staff group the limit can be raised with:

ulimit -d 3000000

The change will only affect the current shell and processes spawned by it. To
make the change system-wide, change datasize-cur and datasize-max in
/etc/login.conf, and reboot.

Building Bitcoin Core

Important: use gmake, not make. The non-GNU make will exit with a horrible error.

Preparation:

export AUTOCONF_VERSION=2.69 # replace this with the autoconf version that you installed
export AUTOMAKE_VERSION=1.15 # replace this with the automake version that you installed
./autogen.sh

Make sure BDB_PREFIX and BOOST_PREFIX are set to the appropriate paths from the above steps.

To configure with wallet:

./configure --with-gui=no --with-boost=$BOOST_PREFIX \
 CC=egcc CXX=eg++ CPP=ecpp \
 BDB_LIBS="-L${BDB_PREFIX}/lib -ldb_cxx-4.8" BDB_CFLAGS="-I${BDB_PREFIX}/include"

To configure without wallet:

./configure --disable-wallet --with-gui=no --with-boost=$BOOST_PREFIX \
 CC=egcc CXX=eg++ CPP=ecpp

Build and run the tests:

gmake # can use -jX here for parallelism
gmake check

Clang (not currently working)

WARNING: This is outdated, needs to be updated for OpenBSD 6.0 and re-tried.

Using a newer g++ results in linking the new code to a new libstdc++.
Libraries built with the old g++, will still import the old library.
This gives conflicts, necessitating rebuild of all C++ dependencies of the application.

With clang this can - at least theoretically - be avoided because it uses the
base system’s libstdc++.

pkg_add llvm boost

./configure --disable-wallet --with-gui=no CC=clang CXX=clang++
gmake

However, this does not appear to work. Compilation succeeds, but link fails
with many ‘local symbol discarded’ errors:

local symbol 150: discarded in section `.text._ZN10tinyformat6detail14FormatIterator6finishEv' from libbitcoin_util.a(libbitcoin_util_a-random.o)
local symbol 151: discarded in section `.text._ZN10tinyformat6detail14FormatIterator21streamStateFromFormatERSoRjPKcii' from libbitcoin_util.a(libbitcoin_util_a-random.o)
local symbol 152: discarded in section `.text._ZN10tinyformat6detail12convertToIntIA13_cLb0EE6invokeERA13_Kc' from libbitcoin_util.a(libbitcoin_util_a-random.o)

According to similar reported errors this is a binutils (ld) issue in 2.15, the
version installed by OpenBSD 5.7:

	http://openbsd-archive.7691.n7.nabble.com/UPDATE-cppcheck-1-65-td248900.html

	https://llvm.org/bugs/show_bug.cgi?id=9758

There is no known workaround for this.

WINDOWS BUILD NOTES

Below are some notes on how to build Bitcoin Core for Windows.

Most developers use cross-compilation from Ubuntu to build executables for
Windows. Cross-compilation is also used to build the release binaries.

Currently only building on Ubuntu Trusty 14.04 or Ubuntu Zesty 17.04 or later is supported.
Building on Ubuntu Xenial 16.04 is known to be broken, see extensive discussion in issue 8732 [https://github.com/bitcoin/bitcoin/issues/8732].
While it may be possible to do so with work arounds, it’s potentially dangerous and not recommended.

While there are potentially a number of ways to build on Windows (for example using msys / mingw-w64),
using the Windows Subsystem For Linux is the most straightforward. If you are building with
another method, please contribute the instructions here for others who are running versions
of Windows that are not compatible with the Windows Subsystem for Linux.

Compiling with Windows Subsystem For Linux

With Windows 10, Microsoft has released a new feature named the Windows
Subsystem for Linux [https://msdn.microsoft.com/commandline/wsl/about]. This
feature allows you to run a bash shell directly on Windows in an Ubuntu-based
environment. Within this environment you can cross compile for Windows without
the need for a separate Linux VM or server.

This feature is not supported in versions of Windows prior to Windows 10 or on
Windows Server SKUs. In addition, it is available only for 64-bit versions of
Windows [https://msdn.microsoft.com/en-us/commandline/wsl/install_guide].

To get the bash shell, you must first activate the feature in Windows.

	Turn on Developer Mode

	Open Settings -> Update and Security -> For developers

	Select the Developer Mode radio button

	Restart if necessary

	Enable the Windows Subsystem for Linux feature

	From Start, search for “Turn Windows features on or off” (type ‘turn’)

	Select Windows Subsystem for Linux (beta)

	Click OK

	Restart if necessary

	Complete Installation

	Open a cmd prompt and type “bash”

	Accept the license

	Create a new UNIX user account (this is a separate account from your Windows account)

After the bash shell is active, you can follow the instructions below, starting
with the “Cross-compilation” section. Compiling the 64-bit version is
recommended but it is possible to compile the 32-bit version.

Cross-compilation

These steps can be performed on, for example, an Ubuntu VM. The depends system
will also work on other Linux distributions, however the commands for
installing the toolchain will be different.

First, install the general dependencies:

sudo apt-get install build-essential libtool autotools-dev automake pkg-config bsdmainutils curl

A host toolchain (build-essential) is necessary because some dependency
packages (such as protobuf) need to build host utilities that are used in the
build process.

See also: dependencies.md.

If you’re building on Ubuntu 17.04 or later, run these two commands, selecting the ‘posix’ variant for both,
to work around issues with mingw-w64. See issue 8732 [https://github.com/bitcoin/bitcoin/issues/8732] for more information.

sudo update-alternatives --config x86_64-w64-mingw32-g++
sudo update-alternatives --config x86_64-w64-mingw32-gcc

Building for 64-bit Windows

To build executables for Windows 64-bit, install the following dependencies:

sudo apt-get install g++-mingw-w64-x86-64 mingw-w64-x86-64-dev

Then build using:

PATH=$(echo "$PATH" | sed -e 's/:\/mnt.*//g') # strip out problematic Windows %PATH% imported var
cd depends
make HOST=x86_64-w64-mingw32
cd ..
./autogen.sh # not required when building from tarball
CONFIG_SITE=$PWD/depends/x86_64-w64-mingw32/share/config.site ./configure --prefix=/
make

Building for 32-bit Windows

To build executables for Windows 32-bit, install the following dependencies:

sudo apt-get install g++-mingw-w64-i686 mingw-w64-i686-dev

Then build using:

PATH=$(echo "$PATH" | sed -e 's/:\/mnt.*//g') # strip out problematic Windows %PATH% imported var
cd depends
make HOST=i686-w64-mingw32
cd ..
./autogen.sh # not required when building from tarball
CONFIG_SITE=$PWD/depends/i686-w64-mingw32/share/config.site ./configure --prefix=/
make

Depends system

For further documentation on the depends system see README.md in the depends directory.

Installation

After building using the Windows subsystem it can be useful to copy the compiled
executables to a directory on the windows drive in the same directory structure
as they appear in the release .zip archive. This can be done in the following
way. This will install to c:\workspace\bitcoin, for example:

make install DESTDIR=/mnt/c/workspace/bitcoin

Reduce Traffic

Some node operators need to deal with bandwidth caps imposed by their ISPs.

By default, bitcoin-core allows up to 125 connections to different peers, 8 of
which are outbound. You can therefore, have at most 117 inbound connections.

The default settings can result in relatively significant traffic consumption.

Ways to reduce traffic:

1. Use -maxuploadtarget=<MiB per day>

A major component of the traffic is caused by serving historic blocks to other nodes
during the initial blocks download phase (syncing up a new node).
This option can be specified in MiB per day and is turned off by default.
This is not a hard limit; only a threshold to minimize the outbound
traffic. When the limit is about to be reached, the uploaded data is cut by no
longer serving historic blocks (blocks older than one week).
Keep in mind that new nodes require other nodes that are willing to serve
historic blocks.

Whitelisted peers will never be disconnected, although their traffic counts for
calculating the target.

2. Disable “listening” (-listen=0)

Disabling listening will result in fewer nodes connected (remember the maximum of 8
outbound peers). Fewer nodes will result in less traffic usage as you are relaying
blocks and transactions to fewer nodes.

3. Reduce maximum connections (-maxconnections=<num>)

Reducing the maximum connected nodes to a minimum could be desirable if traffic
limits are tiny. Keep in mind that bitcoin’s trustless model works best if you are
connected to a handful of nodes.

Gitian building

This file was moved to the Bitcoin Core documentation repository [https://github.com/bitcoin-core/docs/blob/master/gitian-building.md] at https://github.com/bitcoin-core/docs.

 The list of assets used in the bitcoin source and their attribution can now be found in contrib/debian/copyright.

 Deterministic OS X Dmg Notes.

Working OS X DMGs are created in Linux by combining a recent clang,
the Apple binutils (ld, ar, etc) and DMG authoring tools.

Apple uses clang extensively for development and has upstreamed the necessary
functionality so that a vanilla clang can take advantage. It supports the use
of -F, -target, -mmacosx-version-min, and –sysroot, which are all necessary
when building for OS X.

Apple’s version of binutils (called cctools) contains lots of functionality
missing in the FSF’s binutils. In addition to extra linker options for
frameworks and sysroots, several other tools are needed as well such as
install_name_tool, lipo, and nmedit. These do not build under linux, so they
have been patched to do so. The work here was used as a starting point:
mingwandroid/toolchain4 [https://github.com/mingwandroid/toolchain4].

In order to build a working toolchain, the following source packages are needed
from Apple: cctools, dyld, and ld64.

These tools inject timestamps by default, which produce non-deterministic
binaries. The ZERO_AR_DATE environment variable is used to disable that.

This version of cctools has been patched to use the current version of clang’s
headers and its libLTO.so rather than those from llvmgcc, as it was
originally done in toolchain4.

To complicate things further, all builds must target an Apple SDK. These SDKs
are free to download, but not redistributable.
To obtain it, register for a developer account, then download the Xcode 7.3.1 dmg [https://developer.apple.com/devcenter/download.action?path=/Developer_Tools/Xcode_7.3.1/Xcode_7.3.1.dmg].

This file is several gigabytes in size, but only a single directory inside is
needed:

Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.11.sdk

Unfortunately, the usual linux tools (7zip, hpmount, loopback mount) are incapable of opening this file.
To create a tarball suitable for Gitian input, there are two options:

Using Mac OS X, you can mount the dmg, and then create it with:

 $ hdiutil attach Xcode_7.3.1.dmg
 $ tar -C /Volumes/Xcode/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/ -czf MacOSX10.11.sdk.tar.gz MacOSX10.11.sdk

Alternatively, you can use 7zip and SleuthKit to extract the files one by one.
The script contrib/macdeploy/extract-osx-sdk.sh automates this. First ensure
the dmg file is in the current directory, and then run the script. You may wish
to delete the intermediate 5.hfs file and MacOSX10.11.sdk (the directory) when
you’ve confirmed the extraction succeeded.

apt-get install p7zip-full sleuthkit
contrib/macdeploy/extract-osx-sdk.sh
rm -rf 5.hfs MacOSX10.11.sdk

The Gitian descriptors build 2 sets of files: Linux tools, then Apple binaries
which are created using these tools. The build process has been designed to
avoid including the SDK’s files in Gitian’s outputs. All interim tarballs are
fully deterministic and may be freely redistributed.

genisoimage is used to create the initial DMG. It is not deterministic as-is,
so it has been patched. A system genisoimage will work fine, but it will not
be deterministic because the file-order will change between invocations.
The patch can be seen here: theuni/osx-cross-depends [https://raw.githubusercontent.com/theuni/osx-cross-depends/master/patches/cdrtools/genisoimage.diff].
No effort was made to fix this cleanly, so it likely leaks memory badly. But
it’s only used for a single invocation, so that’s no real concern.

genisoimage cannot compress DMGs, so afterwards, the ‘dmg’ tool from the
libdmg-hfsplus project is used to compress it. There are several bugs in this
tool and its maintainer has seemingly abandoned the project. It has been forked
and is available (with fixes) here: theuni/libdmg-hfsplus [https://github.com/theuni/libdmg-hfsplus].

The ‘dmg’ tool has the ability to create DMGs from scratch as well, but this
functionality is broken. Only the compression feature is currently used.
Ideally, the creation could be fixed and genisoimage would no longer be necessary.

Background images and other features can be added to DMG files by inserting a
.DS_Store before creation. This is generated by the script
contrib/macdeploy/custom_dsstore.py.

As of OS X Mavericks (10.9), using an Apple-blessed key to sign binaries is a
requirement in order to satisfy the new Gatekeeper requirements. Because this
private key cannot be shared, we’ll have to be a bit creative in order for the
build process to remain somewhat deterministic. Here’s how it works:

	Builders use Gitian to create an unsigned release. This outputs an unsigned
dmg which users may choose to bless and run. It also outputs an unsigned app
structure in the form of a tarball, which also contains all of the tools
that have been previously (deterministically) built in order to create a
final dmg.

	The Apple keyholder uses this unsigned app to create a detached signature,
using the script that is also included there. Detached signatures are available from this repository [https://github.com/bitcoin-core/bitcoin-detached-sigs].

	Builders feed the unsigned app + detached signature back into Gitian. It
uses the pre-built tools to recombine the pieces into a deterministic dmg.

Unauthenticated REST Interface

The REST API can be enabled with the -rest option.

The interface runs on the same port as the JSON-RPC interface, by default port 8332 for mainnet, port 18332 for testnet,
and port 18443 for regtest.

Supported API

Transactions

GET /rest/tx/<TX-HASH>.<bin|hex|json>

Given a transaction hash: returns a transaction in binary, hex-encoded binary, or JSON formats.

For full TX query capability, one must enable the transaction index via “txindex=1” command line / configuration option.

Blocks

GET /rest/block/<BLOCK-HASH>.<bin|hex|json>
GET /rest/block/notxdetails/<BLOCK-HASH>.<bin|hex|json>

Given a block hash: returns a block, in binary, hex-encoded binary or JSON formats.

The HTTP request and response are both handled entirely in-memory, thus making maximum memory usage at least 2.66MB (1 MB max block, plus hex encoding) per request.

With the /notxdetails/ option JSON response will only contain the transaction hash instead of the complete transaction details. The option only affects the JSON response.

Blockheaders

GET /rest/headers/<COUNT>/<BLOCK-HASH>.<bin|hex|json>

Given a block hash: returns amount of blockheaders in upward direction.

 Translations

Translations

The Bitcoin-Core project has been designed to support multiple localisations. This makes adding new phrases, and completely new languages easily achievable. For managing all application translations, Bitcoin-Core makes use of the Transifex online translation management tool.

Helping to translate (using Transifex)

Transifex is setup to monitor the GitHub repo for updates, and when code containing new translations is found, Transifex will process any changes. It may take several hours after a pull-request has been merged, to appear in the Transifex web interface.

Multiple language support is critical in assisting Bitcoin’s global adoption, and growth. One of Bitcoin’s greatest strengths is cross-border money transfers, any help making that easier is greatly appreciated.

See the Transifex Bitcoin project [https://www.transifex.com/projects/p/bitcoin/] to assist in translations. You should also join the translation mailing list for announcements - see details below.

Writing code with translations

We use automated scripts to help extract translations in both Qt, and non-Qt source files. It is rarely necessary to manually edit the files in src/qt/locale/. The translation source files must adhere to the following format:
bitcoin_xx_YY.ts or bitcoin_xx.ts

src/qt/locale/bitcoin_en.ts is treated in a special way. It is used as the source for all other translations. Whenever a string in the source code is changed, this file must be updated to reflect those changes. A custom script is used to extract strings from the non-Qt parts. This script makes use of gettext, so make sure that utility is installed (ie, apt-get install gettext on Ubuntu/Debian). Once this has been updated, lupdate (included in the Qt SDK) is used to update bitcoin_en.ts.

To automatically regenerate the bitcoin_en.ts file, run the following commands:

cd src/
make translate

contrib/bitcoin-qt.pro takes care of generating .qm (binary compiled) files from .ts (source files) files. It’s mostly automated, and you shouldn’t need to worry about it.

Example Qt translation

QToolBar *toolbar = addToolBar(tr("Tabs toolbar"));

Creating a pull-request

For general PRs, you shouldn’t include any updates to the translation source files. They will be updated periodically, primarily around pre-releases, allowing time for any new phrases to be translated before public releases. This is also important in avoiding translation related merge conflicts.

When an updated source file is merged into the GitHub repo, Transifex will automatically detect it (although it can take several hours). Once processed, the new strings will show up as “Remaining” in the Transifex web interface and are ready for translators.

To create the pull-request, use the following commands:

git add src/qt/bitcoinstrings.cpp src/qt/locale/bitcoin_en.ts
git commit

Creating a Transifex account

Visit the Transifex Signup [https://www.transifex.com/signup/] page to create an account. Take note of your username and password, as they will be required to configure the command-line tool.

You can find the Bitcoin translation project at https://www.transifex.com/projects/p/bitcoin/.

Installing the Transifex client command-line tool

The client it used to fetch updated translations. If you are having problems, or need more details, see http://docs.transifex.com/developer/client/setup

For Linux and Mac

pip install transifex-client

Setup your transifex client config as follows. Please ignore the token field.

nano ~/.transifexrc

[https://www.transifex.com]
hostname = https://www.transifex.com
password = PASSWORD
token =
username = USERNAME

For Windows

Please see http://docs.transifex.com/developer/client/setup#windows for details on installation.

The Transifex Bitcoin project config file is included as part of the repo. It can be found at .tx/config, however you shouldn’t need change anything.

Synchronising translations

To assist in updating translations, we have created a script to help.

	python contrib/devtools/update-translations.py

	Update src/qt/bitcoin_locale.qrc manually or via
ls src/qt/locale/*ts|xargs -n1 basename|sed 's/\(bitcoin_\(.*\)\).ts/<file alias="\2">locale\/\1.qm<\/file>/'

	Update src/Makefile.qt.include manually or via
ls src/qt/locale/*ts|xargs -n1 basename|sed 's/\(bitcoin_\(.*\)\).ts/ qt\/locale\/\1.ts \\/'

	git add new translations from src/qt/locale/

Do not directly download translations one by one from the Transifex website, as we do a few post-processing steps before committing the translations.

Handling Plurals (in source files)

When new plurals are added to the source file, it’s important to do the following steps:

	Open bitcoin_en.ts in Qt Linguist (included in the Qt SDK)

	Search for %n, which will take you to the parts in the translation that use plurals

	Look for empty English Translation (Singular) and English Translation (Plural) fields

	Add the appropriate strings for the singular and plural form of the base string

	Mark the item as done (via the green arrow symbol in the toolbar)

	Repeat from step 2, until all singular and plural forms are in the source file

	Save the source file

Translating a new language

To create a new language template, you will need to edit the languages manifest file src/qt/bitcoin_locale.qrc and add a new entry. Below is an example of the English language entry.

<qresource prefix="/translations">
 <file alias="en">locale/bitcoin_en.qm</file>
 ...
</qresource>

Note: that the language translation file must end in .qm (the compiled extension), and not .ts.

Questions and general assistance

The Bitcoin-Core translation maintainers include tcatm, seone, Diapolo, wumpus and luke-jr. You can find them, and others, in the Freenode IRC chatroom - irc.freenode.net #bitcoin-core-dev.

If you are a translator, you should also subscribe to the mailing list, https://groups.google.com/forum/#!forum/bitcoin-translators. Announcements will be posted during application pre-releases to notify translators to check for updates.

 <no title>

 Download URL: https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.22/

This is largely a bugfix and TX fee schedule release. We also hope to make 0.3.23 a quick release, to fix problems that the network has seen due to explosive growth in the past week.

Notable changes:

	Client will accept and relay TX’s with 0.0005 BTC fee schedule (users still pay 0.01 BTC per kb, until next version)

	Non-standard transactions accepted on testnet

	Source code tree reorganized (prep for autotools build)

	Remove “Generate Coins” option from GUI, and remove 4way SSE miner. Internal reference CPU miner remains available, but users are directed to external miners for best hash production.

	IRC is overflowing. Client now bootstraps to channels #bitcoin00 - #bitcoin99

	DNS names now may be used with -addnode, -connect (requires -dns to enable)

RPC changes:

	‘listtransactions’ adds ‘from’ param, for range queries

	‘move’ may take account balances negative

	‘settxfee’ added, to manually set TX fee

 <no title>

 bitcoind version 0.4.3 is now available for download at:
http://luke.dashjr.org/programs/bitcoin/files/bitcoind-0.4.3/ (until Gavin uploads to SourceForge)

This is a bugfix-only release based on 0.4.0.

Please note that the wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

Please report bugs for the daemon only using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.4.3#.tar.gz

BUG FIXES

Cease locking memory used by non-sensitive information (this caused a huge performance hit on some platforms, especially noticable during initial blockchain download).
Fixed some address-handling deadlocks (client freezes).
No longer accept inbound connections over the internet when Bitcoin is being used with Tor (identity leak).
Use the correct base transaction fee of 0.0005 BTC for accepting transactions into mined blocks (since 0.4.0, it was incorrectly accepting 0.0001 BTC which was only meant to be relayed).
Add new DNS seeds (maintained by Pieter Wuille and Luke Dashjr).

 <no title>

 Bitcoin version 0.4.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.4.0/

The main feature in this release is wallet private key encryption;
you can set a passphrase that must be entered before sending coins.
See below for more information; if you decide to encrypt your wallet,
WRITE DOWN YOUR PASSPHRASE AND PUT IT IN A SECURE LOCATION. If you
forget or lose your wallet passphrase, you lose your bitcoins.
Previous versions of bitcoin are unable to read encrypted wallets,
and will crash on startup if the wallet is encrypted.

Also note: bitcoin version 0.4 uses a newer version of Berkeley DB
(bdb version 4.8) than previous versions (bdb 4.7). If you upgrade
to version 0.4 and then revert back to an earlier version of bitcoin
the it may be unable to start because bdb 4.7 cannot read bdb 4.8
“log” files.

Notable bug fixes from version 0.3.24:

Fix several bitcoin-becomes-unresponsive bugs due to multithreading
deadlocks.

Optimize database writes for large (lots of inputs) transactions
(fixes a potential denial-of-service attack)

Wallet Encryption

Bitcoin supports native wallet encryption so that people who steal your
wallet file don’t automatically get access to all of your Bitcoins.
In order to enable this feature, choose “Encrypt Wallet” from the
Options menu. You will be prompted to enter a passphrase, which
will be used as the key to encrypt your wallet and will be needed
every time you wish to send Bitcoins. If you lose this passphrase,
you will lose access to spend all of the bitcoins in your wallet,
no one, not even the Bitcoin developers can recover your Bitcoins.
This means you are responsible for your own security, store your
passphrase in a secure location and do not forget it.

Remember that the encryption built into bitcoin only encrypts the
actual keys which are required to send your bitcoins, not the full
wallet. This means that someone who steals your wallet file will
be able to see all the addresses which belong to you, as well as the
relevant transactions, you are only protected from someone spending
your coins.

It is recommended that you backup your wallet file before you
encrypt your wallet. To do this, close the Bitcoin client and
copy the wallet.dat file from ~/.bitcoin/ on Linux, /Users/(user
name)/Application Support/Bitcoin/ on Mac OSX, and %APPDATA%/Bitcoin/
on Windows (that is /Users/(user name)/AppData/Roaming/Bitcoin on
Windows Vista and 7 and /Documents and Settings/(user name)/Application
Data/Bitcoin on Windows XP). Once you have copied that file to a
safe location, reopen the Bitcoin client and Encrypt your wallet.
If everything goes fine, delete the backup and enjoy your encrypted
wallet. Note that once you encrypt your wallet, you will never be
able to go back to a version of the Bitcoin client older than 0.4.

Keep in mind that you are always responsible for your own security.
All it takes is a slightly more advanced wallet-stealing trojan which
installs a keylogger to steal your wallet passphrase as you enter it
in addition to your wallet file and you have lost all your Bitcoins.
Wallet encryption cannot keep you safe if you do not practice
good security, such as running up-to-date antivirus software, only
entering your wallet passphrase in the Bitcoin client and using the
same passphrase only as your wallet passphrase.

See the doc/README file in the bitcoin source for technical details
of wallet encryption.

 How to Upgrade

 Bitcoin Core version 0.9.5 is now available from:

https://bitcoin.org/bin/0.9.5/

This is a new minor version release, with the goal of backporting BIP66. There
are also a few bug fixes and updated translations. Upgrading to this release is
recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Notable changes

Mining and relay policy enhancements

Bitcoin Core’s block templates are now for version 3 blocks only, and any mining
software relying on its getblocktemplate must be updated in parallel to use
libblkmaker either version 0.4.2 or any version from 0.5.1 onward.
If you are solo mining, this will affect you the moment you upgrade Bitcoin
Core, which must be done prior to BIP66 achieving its 951/1001 status.
If you are mining with the stratum mining protocol: this does not affect you.
If you are mining with the getblocktemplate protocol to a pool: this will affect
you at the pool operator’s discretion, which must be no later than BIP66
achieving its 951/1001 status.

0.9.5 changelog

	74f29c2 Check pindexBestForkBase for null

	9cd1dd9 Fix priority calculation in CreateTransaction

	6b4163b Sanitize command strings before logging them.

	3230b32 Raise version of created blocks, and enforce DERSIG in mempool

	989d499 Backport of some of BIP66’s tests

	ab03660 Implement BIP 66 validation rules and switchover logic

	8438074 build: fix dynamic boost check when –with-boost= is used

Credits

Thanks to who contributed to this release, at least:

	21E14

	Alex Morcos

	Cory Fields

	Gregory Maxwell

	Pieter Wuille

	Wladimir J. van der Laan

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Version 0.3.14 is now available
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.14/

Changes:

	Key pool feature for safer wallet backup
Gavin Andresen:

	TEST network mode with switch -testnet

	Option to use SSL for JSON-RPC connections on unix/osx

	validateaddress RPC command
eurekafag:

	Russian translation

 <no title>

 Bitcoin version 0.6.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.0/test/

This release includes more than 20 language localizations.
More translations are welcome; join the
project at Transifex to help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; we are no longer
distributing .tar.gz files here, you can get them
directly from github:
https://github.com/bitcoin/bitcoin/tarball/v0.6.0 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.6.0 # .zip

For Ubuntu users, there is a ppa maintained by Matt Corallo which
you can add to your system so that it will automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
in your terminal, then install the bitcoin-qt package.

KNOWN ISSUES

Shutting down while synchronizing with the network
(downloading the blockchain) can take more than a minute,
because database writes are queued to speed up download
time.

NEW FEATURES SINCE BITCOIN VERSION 0.5

Initial network synchronization should be much faster
(one or two hours on a typical machine instead of ten or more
hours).

Backup Wallet menu option.

Bitcoin-Qt can display and save QR codes for sending
and receiving addresses.

New context menu on addresses to copy/edit/delete them.

New Sign Message dialog that allows you to prove that you
own a bitcoin address by creating a digital
signature.

New wallets created with this version will
use 33-byte ‘compressed’ public keys instead of
65-byte public keys, resulting in smaller
transactions and less traffic on the bitcoin
network. The shorter keys are already supported
by the network but wallet.dat files containing
short keys are not compatible with earlier
versions of Bitcoin-Qt/bitcoind.

New command-line argument -blocknotify=
that will spawn a shell process to run
when a new block is accepted.

 How to Upgrade

 Bitcoin Core version 0.9.1 is now available from:

https://bitcoin.org/bin/0.9.1/

This is a security update. It is recommended to upgrade to this release
as soon as possible.

It is especially important to upgrade if you currently have version
0.9.0 installed and are using the graphical interface OR you are using
bitcoind from any pre-0.9.1 version, and have enabled SSL for RPC and
have configured allowip to allow rpc connections from potentially
hostile hosts.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.1 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

0.9.1 Release notes

No code changes were made between 0.9.0 and 0.9.1. Only the dependencies were changed.

	Upgrade OpenSSL to 1.0.1g. This release fixes the following vulnerabilities which can
affect the Bitcoin Core software:
	CVE-2014-0160 (“heartbleed”)
A missing bounds check in the handling of the TLS heartbeat extension can
be used to reveal up to 64k of memory to a connected client or server.

	CVE-2014-0076
The Montgomery ladder implementation in OpenSSL does not ensure that
certain swap operations have a constant-time behavior, which makes it
easier for local users to obtain ECDSA nonces via a FLUSH+RELOAD cache
side-channel attack.

	Add statically built executables to Linux build

Credits

Credits go to the OpenSSL team for fixing the vulnerabilities quickly.

 How to Upgrade

 Bitcoin-Qt version 0.8.0 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.0/

This is a major release designed to improve performance and handle the
increasing volume of transactions on the network.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

The first time you run after the upgrade a re-indexing process will be
started that will take anywhere from 30 minutes to several hours,
depending on the speed of your machine.

Incompatible Changes

This release no longer maintains a full index of historical transaction ids
by default, so looking up an arbitrary transaction using the getrawtransaction
RPC call will not work. If you need that functionality, you must run once
with -txindex=1 -reindex=1 to rebuild block-chain indices (see below for more
details).

Improvements

Mac and Windows binaries are signed with certificates owned by the Bitcoin
Foundation, to be compatible with the new security features in OSX 10.8 and
Windows 8.

LevelDB, a fast, open-source, non-relational database from Google, is
now used to store transaction and block indices. LevelDB works much better
on machines with slow I/O and is faster in general. Berkeley DB is now only
used for the wallet.dat file (public and private wallet keys and transactions
relevant to you).

Pieter Wuille implemented many optimizations to the way transactions are
verified, so a running, synchronized node uses less working memory and does
much less I/O. He also implemented parallel signature checking, so if you
have a multi-CPU machine all CPUs will be used to verify transactions.

New Features

“Bloom filter” support in the network protocol for sending only relevant transactions to
lightweight clients.

contrib/verifysfbinaries is a shell-script to verify that the binary downloads
at sourceforge have not been tampered with. If you are able, you can help make
everybody’s downloads more secure by running this occasionally to check PGP
signatures against download file checksums.

contrib/spendfrom is a python-language command-line utility that demonstrates
how to use the “raw transactions” JSON-RPC api to send coins received from particular
addresses (also known as “coin control”).

New/changed settings (command-line or bitcoin.conf file)

dbcache : controls LevelDB memory usage.

par : controls how many threads to use to validate transactions. Defaults to the number
of CPUs on your machine, use -par=1 to limit to a single CPU.

txindex : maintains an extra index of old, spent transaction ids so they will be found
by the getrawtransaction JSON-RPC method.

reindex : rebuild block and transaction indices from the downloaded block data.

New JSON-RPC API Features

lockunspent / listlockunspent allow locking transaction outputs for a period of time so
they will not be spent by other processes that might be accessing the same wallet.

addnode / getaddednodeinfo methods, to connect to specific peers without restarting.

importprivkey now takes an optional boolean parameter (default true) to control whether
or not to rescan the blockchain for transactions after importing a new private key.

Important Bug Fixes

Privacy leak: the position of the “change” output in most transactions was not being
properly randomized, making network analysis of the transaction graph to identify
users’ wallets easier.

Zero-confirmation transaction vulnerability: accepting zero-confirmation transactions
(transactions that have not yet been included in a block) from somebody you do not
trust is still not recommended, because there will always be ways for attackers to
double-spend zero-confirmation transactions. However, this release includes a bug
fix that makes it a little bit more difficult for attackers to double-spend a
certain type (“lockTime in the future”) of zero-confirmation transaction.

Dependency Changes

Qt 4.8.3 (compiling against older versions of Qt 4 should continue to work)

Thanks to everybody who contributed to this release:

Alexander Kjeldaas
Andrey Alekseenko
Arnav Singh
Christian von Roques
Eric Lombrozo
Forrest Voight
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Luke Dashjr
Matt Corallo
Mike Cassano
Mike Hearn
Peter Todd
Philip Kaufmann
Pieter Wuille
Richard Schwab
Robert Backhaus
Rune K. Svendsen
Sergio Demian Lerner
Wladimir J. van der Laan
burger2
default
fanquake
grimd34th
justmoon
redshark1802
tucenaber
xanatos

 <no title>

 Bitcoin version 0.5.1 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.1/

This is a bugfix-only release.

This release includes 13 translations, including 5 new translations:
Italian, Hungarian, Ukranian, Portuguese (Brazilian) and Simplified Chinese.
More translations are welcome; join the project at Transifex if you can help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; we are no longer
distributing .tar.gz files here, you can get them
directly from github:
https://github.com/bitcoin/bitcoin/tarball/v0.5.1 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.5.1 # .zip

For Ubuntu users, there is a new ppa maintained by Matt Corallo which
you can add to your system so that it will automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
in your terminal, then install the bitcoin-qt package.

BUG FIXES

Re-enable SSL support for the JSON-RPC interface (it was unintentionally
disabled for the 0.5.0 release binaries).

The code that finds peers via “dns seeds” no longer stops bitcoin startup
if one of the dns seed machines is down.

Tooltips on the transaction list view were rendering incorrectly (as black boxes
or with a transparent background).

Prevent a denial-of-service attack involving flooding a bitcoin node with
orphan blocks.

The wallet passphrase dialog now warns you if the caps lock key was pressed.

Improved searching in addresses and labels in bitcoin-qt.

 <no title>

 Version 0.3.13 is now available. You should upgrade to prevent potential problems with 0/unconfirmed transactions. Note: 0.3.13 prevents problems if you haven’t already spent a 0/unconfirmed transaction, but if that already happened, you need 0.3.13.2.

Changes:

	Don’t count or spend payments until they have 1 confirmation.

	Internal version number from 312 to 31300.

	Only accept transactions sent by IP address if -allowreceivebyip is specified.

	Dropped DB_PRIVATE Berkeley DB flag.

	Fix problem sending the last cent with sub-cent fractional change.

	Auto-detect whether to use 128-bit 4-way SSE2 on Linux.
Gavin Andresen:

	Option -rpcallowip= to accept json-rpc connections from another machine.

	Clean shutdown on SIGTERM on Linux.

Download:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.13/

(Thanks Laszlo for the Mac OSX build!)

Note:
The SSE2 auto-detect in the Linux 64-bit version doesn’t work with AMD in 64-bit mode. Please try this instead and let me know if it gets it right:
http://www.bitcoin.org/download/bitcoin-0.3.13.1-specialbuild-linux64.tar.gz

You can still control the SSE2 use manually with -4way and -4way=0.

Version 0.3.13.2 (SVN rev 161) has improvements for the case where you already had 0/unconfirmed transactions that you might have already spent. Here’s a Windows build of it:
http://www.bitcoin.org/download/bitcoin-0.3.13.2-win32-setup.exe

 <no title>

 Bitcoin version 0.4.4 is now available for download at:
http://luke.dashjr.org/programs/bitcoin/files/bitcoind-0.4.4/

This is a bugfix-only release based on 0.4.0.

Please note that the wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

Please report bugs for the daemon only using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.4.4#.tar.gz

BUG FIXES

Limit the number of orphan transactions stored in memory, to prevent a potential denial-of-service attack by flooding orphan transactions. Also never store invalid transactions at all.
Fix possible buffer overflow on systems with very long application data paths. This is not exploitable.
Resolved multiple bugs preventing long-term unlocking of encrypted wallets (issue #922).
Only send local IP in “version” messages if it is globally routable (ie, not private), and try to get such an IP from UPnP if applicable.
Reannounce UPnP port forwards every 20 minutes, to workaround routers expiring old entries, and allow the -upnp option to override any stored setting.
Various memory leaks and potential null pointer deferences have been
fixed.
Several shutdown issues have been fixed.
Check that keys stored in the wallet are valid at startup, and if not,
report corruption.
Various build fixes.
If no password is specified to bitcoind, recommend a secure password.
Update hard-coded fallback seed nodes, choosing recent ones with long uptime and versions at least 0.4.0.
Add checkpoint at block 168,000.

 Upgrading and downgrading

 Bitcoin Core version 0.10.0 is now available from:

https://bitcoin.org/bin/0.10.0/

This is a new major version release, bringing both new features and
bug fixes.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrading warning

Because release 0.10.0 makes use of headers-first synchronization and parallel
block download (see further), the block files and databases are not
backwards-compatible with older versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

Faster synchronization

Bitcoin Core now uses ‘headers-first synchronization’. This means that we first
ask peers for block headers (a total of 27 megabytes, as of December 2014) and
validate those. In a second stage, when the headers have been discovered, we
download the blocks. However, as we already know about the whole chain in
advance, the blocks can be downloaded in parallel from all available peers.

In practice, this means a much faster and more robust synchronization. On
recent hardware with a decent network link, it can be as little as 3 hours
for an initial full synchronization. You may notice a slower progress in the
very first few minutes, when headers are still being fetched and verified, but
it should gain speed afterwards.

A few RPCs were added/updated as a result of this:

	getblockchaininfo now returns the number of validated headers in addition to
the number of validated blocks.

	getpeerinfo lists both the number of blocks and headers we know we have in
common with each peer. While synchronizing, the heights of the blocks that we
have requested from peers (but haven’t received yet) are also listed as
‘inflight’.

	A new RPC getchaintips lists all known branches of the block chain,
including those we only have headers for.

Transaction fee changes

This release automatically estimates how high a transaction fee (or how
high a priority) transactions require to be confirmed quickly. The default
settings will create transactions that confirm quickly; see the new
‘txconfirmtarget’ setting to control the tradeoff between fees and
confirmation times. Fees are added by default unless the ‘sendfreetransactions’
setting is enabled.

Prior releases used hard-coded fees (and priorities), and would
sometimes create transactions that took a very long time to confirm.

Statistics used to estimate fees and priorities are saved in the
data directory in the fee_estimates.dat file just before
program shutdown, and are read in at startup.

New command line options for transaction fee changes:

	-txconfirmtarget=n : create transactions that have enough fees (or priority)
so they are likely to begin confirmation within n blocks (default: 1). This setting
is over-ridden by the -paytxfee option.

	-sendfreetransactions : Send transactions as zero-fee transactions if possible
(default: 0)

New RPC commands for fee estimation:

	estimatefee nblocks : Returns approximate fee-per-1,000-bytes needed for
a transaction to begin confirmation within nblocks. Returns -1 if not enough
transactions have been observed to compute a good estimate.

	estimatepriority nblocks : Returns approximate priority needed for
a zero-fee transaction to begin confirmation within nblocks. Returns -1 if not
enough free transactions have been observed to compute a good
estimate.

RPC access control changes

Subnet matching for the purpose of access control is now done
by matching the binary network address, instead of with string wildcard matching.
For the user this means that -rpcallowip takes a subnet specification, which can be

	a single IP address (e.g. 1.2.3.4 or fe80::0012:3456:789a:bcde)

	a network/CIDR (e.g. 1.2.3.0/24 or fe80::0000/64)

	a network/netmask (e.g. 1.2.3.4/255.255.255.0 or fe80::0012:3456:789a:bcde/ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff)

An arbitrary number of -rpcallow arguments can be given. An incoming connection will be accepted if its origin address
matches one of them.

For example:

0.9.x and before	0.10.x
——————————————–	—————————————
-rpcallowip=192.168.1.1	-rpcallowip=192.168.1.1 (unchanged)
-rpcallowip=192.168.1.*	-rpcallowip=192.168.1.0/24
-rpcallowip=192.168.*	-rpcallowip=192.168.0.0/16
-rpcallowip=* (dangerous!)	-rpcallowip=::/0 (still dangerous!)

Using wildcards will result in the rule being rejected with the following error in debug.log:

Error: Invalid -rpcallowip subnet specification: *. Valid are a single IP (e.g. 1.2.3.4), a network/netmask (e.g. 1.2.3.4/255.255.255.0) or a network/CIDR (e.g. 1.2.3.4/24).

REST interface

A new HTTP API is exposed when running with the -rest flag, which allows
unauthenticated access to public node data.

It is served on the same port as RPC, but does not need a password, and uses
plain HTTP instead of JSON-RPC.

Assuming a local RPC server running on port 8332, it is possible to request:

	Blocks: http://localhost:8332/rest/block/HASH.EXT

	Blocks without transactions: http://localhost:8332/rest/block/notxdetails/HASH.EXT

	Transactions (requires -txindex): http://localhost:8332/rest/tx/HASH.EXT

In every case, EXT can be bin (for raw binary data), hex (for hex-encoded
binary) or json.

For more details, see the doc/REST-interface.md document in the repository.

RPC Server “Warm-Up” Mode

The RPC server is started earlier now, before most of the expensive
intialisations like loading the block index. It is available now almost
immediately after starting the process. However, until all initialisations
are done, it always returns an immediate error with code -28 to all calls.

This new behaviour can be useful for clients to know that a server is already
started and will be available soon (for instance, so that they do not
have to start it themselves).

Improved signing security

For 0.10 the security of signing against unusual attacks has been
improved by making the signatures constant time and deterministic.

This change is a result of switching signing to use libsecp256k1
instead of OpenSSL. Libsecp256k1 is a cryptographic library
optimized for the curve Bitcoin uses which was created by Bitcoin
Core developer Pieter Wuille.

There exist attacks[1] against most ECC implementations where an
attacker on shared virtual machine hardware could extract a private
key if they could cause a target to sign using the same key hundreds
of times. While using shared hosts and reusing keys are inadvisable
for other reasons, it’s a better practice to avoid the exposure.

OpenSSL has code in their source repository for derandomization
and reduction in timing leaks that we’ve eagerly wanted to use for a
long time, but this functionality has still not made its
way into a released version of OpenSSL. Libsecp256k1 achieves
significantly stronger protection: As far as we’re aware this is
the only deployed implementation of constant time signing for
the curve Bitcoin uses and we have reason to believe that
libsecp256k1 is better tested and more thoroughly reviewed
than the implementation in OpenSSL.

[1] https://eprint.iacr.org/2014/161.pdf

Watch-only wallet support

The wallet can now track transactions to and from wallets for which you know
all addresses (or scripts), even without the private keys.

This can be used to track payments without needing the private keys online on a
possibly vulnerable system. In addition, it can help for (manual) construction
of multisig transactions where you are only one of the signers.

One new RPC, importaddress, is added which functions similarly to
importprivkey, but instead takes an address or script (in hexadecimal) as
argument. After using it, outputs credited to this address or script are
considered to be received, and transactions consuming these outputs will be
considered to be sent.

The following RPCs have optional support for watch-only:
getbalance, listreceivedbyaddress, listreceivedbyaccount,
listtransactions, listaccounts, listsinceblock, gettransaction. See the
RPC documentation for those methods for more information.

Compared to using getrawtransaction, this mechanism does not require
-txindex, scales better, integrates better with the wallet, and is compatible
with future block chain pruning functionality. It does mean that all relevant
addresses need to added to the wallet before the payment, though.

Consensus library

Starting from 0.10.0, the Bitcoin Core distribution includes a consensus library.

The purpose of this library is to make the verification functionality that is
critical to Bitcoin’s consensus available to other applications, e.g. to language
bindings such as python-bitcoinlib [https://pypi.python.org/pypi/python-bitcoinlib] or
alternative node implementations.

This library is called libbitcoinconsensus.so (or, .dll for Windows).
Its interface is defined in the C header bitcoinconsensus.h [https://github.com/bitcoin/bitcoin/blob/0.10/src/script/bitcoinconsensus.h].

In its initial version the API includes two functions:

	bitcoinconsensus_verify_script verifies a script. It returns whether the indicated input of the provided serialized transaction
correctly spends the passed scriptPubKey under additional constraints indicated by flags

	bitcoinconsensus_version returns the API version, currently at an experimental 0

The functionality is planned to be extended to e.g. UTXO management in upcoming releases, but the interface
for existing methods should remain stable.

Standard script rules relaxed for P2SH addresses

The IsStandard() rules have been almost completely removed for P2SH
redemption scripts, allowing applications to make use of any valid
script type, such as “n-of-m OR y”, hash-locked oracle addresses, etc.
While the Bitcoin protocol has always supported these types of script,
actually using them on mainnet has been previously inconvenient as
standard Bitcoin Core nodes wouldn’t relay them to miners, nor would
most miners include them in blocks they mined.

bitcoin-tx

It has been observed that many of the RPC functions offered by bitcoind are
“pure functions”, and operate independently of the bitcoind wallet. This
included many of the RPC “raw transaction” API functions, such as
createrawtransaction.

bitcoin-tx is a newly introduced command line utility designed to enable easy
manipulation of bitcoin transactions. A summary of its operation may be
obtained via “bitcoin-tx –help” Transactions may be created or signed in a
manner similar to the RPC raw tx API. Transactions may be updated, deleting
inputs or outputs, or appending new inputs and outputs. Custom scripts may be
easily composed using a simple text notation, borrowed from the bitcoin test
suite.

This tool may be used for experimenting with new transaction types, signing
multi-party transactions, and many other uses. Long term, the goal is to
deprecate and remove “pure function” RPC API calls, as those do not require a
server round-trip to execute.

Other utilities “bitcoin-key” and “bitcoin-script” have been proposed, making
key and script operations easily accessible via command line.

Mining and relay policy enhancements

Bitcoin Core’s block templates are now for version 3 blocks only, and any mining
software relying on its getblocktemplate must be updated in parallel to use
libblkmaker either version 0.4.2 or any version from 0.5.1 onward.
If you are solo mining, this will affect you the moment you upgrade Bitcoin
Core, which must be done prior to BIP66 achieving its 951/1001 status.
If you are mining with the stratum mining protocol: this does not affect you.
If you are mining with the getblocktemplate protocol to a pool: this will affect
you at the pool operator’s discretion, which must be no later than BIP66
achieving its 951/1001 status.

The prioritisetransaction RPC method has been added to enable miners to
manipulate the priority of transactions on an individual basis.

Bitcoin Core now supports BIP 22 long polling, so mining software can be
notified immediately of new templates rather than having to poll periodically.

Support for BIP 23 block proposals is now available in Bitcoin Core’s
getblocktemplate method. This enables miners to check the basic validity of
their next block before expending work on it, reducing risks of accidental
hardforks or mining invalid blocks.

Two new options to control mining policy:

	-datacarrier=0/1 : Relay and mine “data carrier” (OP_RETURN) transactions
if this is 1.

	-datacarriersize=n : Maximum size, in bytes, we consider acceptable for
“data carrier” outputs.

The relay policy has changed to more properly implement the desired behavior of not
relaying free (or very low fee) transactions unless they have a priority above the
AllowFreeThreshold(), in which case they are relayed subject to the rate limiter.

BIP 66: strict DER encoding for signatures

Bitcoin Core 0.10 implements BIP 66, which introduces block version 3, and a new
consensus rule, which prohibits non-DER signatures. Such transactions have been
non-standard since Bitcoin v0.8.0 (released in February 2013), but were
technically still permitted inside blocks.

This change breaks the dependency on OpenSSL’s signature parsing, and is
required if implementations would want to remove all of OpenSSL from the
consensus code.

The same miner-voting mechanism as in BIP 34 is used: when 751 out of a
sequence of 1001 blocks have version number 3 or higher, the new consensus
rule becomes active for those blocks. When 951 out of a sequence of 1001
blocks have version number 3 or higher, it becomes mandatory for all blocks.

Backward compatibility with current mining software is NOT provided, thus miners
should read the first paragraph of “Mining and relay policy enhancements” above.

0.10.0 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

RPC:

	f923c07 Support IPv6 lookup in bitcoin-cli even when IPv6 only bound on localhost

	b641c9c Fix addnode “onetry”: Connect with OpenNetworkConnection

	171ca77 estimatefee / estimatepriority RPC methods

	b750cf1 Remove cli functionality from bitcoind

	f6984e8 Add “chain” to getmininginfo, improve help in getblockchaininfo

	99ddc6c Add nLocalServices info to RPC getinfo

	cf0c47b Remove getwork() RPC call

	2a72d45 prioritisetransaction

 How to Upgrade

 Bitcoin Core version 0.9.2 is now available from:

https://bitcoin.org/bin/0.9.2/

This is a new minor version release, bringing mostly bug fixes and some minor
improvements. OpenSSL has been updated because of a security issue (CVE-2014-0224).
Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.2 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

Important changes

Gitian OSX build

The deterministic build system that was already used for Windows and Linux
builds is now used for OSX as well. Although the resulting executables have
been tested quite a bit, there could be possible regressions. Be sure to report
these on the Github bug tracker mentioned above.

Compatibility of Linux build

For Linux we now build against Qt 4.6, and filter the symbols for libstdc++ and glibc.
This brings back compatibility with

	Debian 6+ / Tails

	Ubuntu 10.04

	CentOS 6.5

0.9.2 Release notes

The OpenSSL dependency in the gitian builds has been upgraded to 1.0.1h because of CVE-2014-0224.

RPC:

	Add getwalletinfo, getblockchaininfo and getnetworkinfo calls (will replace hodge-podge getinfo at some point)

	Add a relayfee field to getnetworkinfo

	Fix RPC related shutdown hangs and leaks

	Always show syncnode in getpeerinfo

	sendrawtransaction: report the reject code and reason, and make it possible to re-send transactions that are already in the mempool

	getmininginfo show right genproclimit

Command-line options:

	Fix -printblocktree output

	Show error message if ReadConfigFile fails

Block-chain handling and storage:

	Fix for GetBlockValue() after block 13,440,000 (BIP42)

	Upgrade leveldb to 1.17

Protocol and network code:

	Per-peer block download tracking and stalled download detection

	Add new DNS seed from bitnodes.io

	Prevent socket leak in ThreadSocketHandler and correct some proxy related socket leaks

	Use pnode->nLastRecv as sync score (was the wrong way around)

Wallet:

	Make GetAvailableCredit run GetHash() only once per transaction (performance improvement)

	Lower paytxfee warning threshold from 0.25 BTC to 0.01 BTC

	Fix importwallet nTimeFirstKey (trigger necessary rescans)

	Log BerkeleyDB version at startup

	CWallet init fix

Build system:

	Add OSX build descriptors to gitian

	Fix explicit –disable-qt-dbus

	Don’t require db_cxx.h when compiling with wallet disabled and GUI enabled

	Improve missing boost error reporting

	Upgrade miniupnpc version to 1.9

	gitian-linux: –enable-glibc-back-compat for binary compatibility with old distributions

	gitian: don’t export any symbols from executable

	gitian: build against Qt 4.6

	devtools: add script to check symbols from Linux gitian executables

	Remove build-time no-IPv6 setting

GUI:

	Fix various coin control visual issues

	Show number of in/out connections in debug console

	Show weeks as well as years behind for long timespans behind

	Enable and disable the Show and Remove buttons for requested payments history based on whether any entry is selected.

	Show also value for options overridden on command line in options dialog

	Fill in label from address book also for URIs

	Fixes feel when resizing the last column on tables (issue #2862)

	Fix ESC in disablewallet mode

	Add expert section to wallet tab in optionsdialog

	Do proper boost::path conversion (fixes unicode in datadir)

	Only override -datadir if different from the default (fixes -datadir in config file)

	Show rescan progress at start-up

	Show importwallet progress

	Get required locks upfront in polling functions (avoids hanging on locks)

	Catch Windows shutdown events while client is running

	Optionally add third party links to transaction context menu

	Check for !pixmap() before trying to export QR code (avoids crashes when no QR code could be generated)

	Fix “Start bitcoin on system login”

Miscellaneous:

	Replace non-threadsafe C functions (gmtime, strerror and setlocale)

	Add missing cs_main and wallet locks

	Avoid exception at startup when system locale not recognized

	Changed bitrpc.py’s raw_input to getpass for passwords to conceal characters during command line input

	devtools: add a script to fetch and postprocess translations

Credits

Thanks to everyone who contributed to this release:

	Addy Yeow

	Altoidnerd

	Andrea D’Amore

	Andreas Schildbach

	Bardi Harborow

	Brandon Dahler

	Bryan Bishop

	Chris Beams

	Christian von Roques

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Newton

	David A. Harding

	ditto-b

	duanemoody

	Eric S. Bullington

	Fabian Raetz

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Haakon Nilsen

	harry

	Hector Jusforgues

	Isidoro Ghezzi

	Jeff Garzik

	Johnathan Corgan

	jtimon

	Kamil Domanski

	langerhans

	Luke Dashjr

	Manuel Araoz

	Mark Friedenbach

	Matt Corallo

	Matthew Bogosian

	Meeh

	Michael Ford

	Michagogo

	Mikael Wikman

	Mike Hearn

	olalonde

	paveljanik

	peryaudo

	Philip Kaufmann

	philsong

	Pieter Wuille

	R E Broadley

	richierichrawr

	Rune K. Svendsen

	rxl

	shshshsh

	Simon de la Rouviere

	Stuart Cardall

	super3

	Telepatheic

	Thomas Zander

	Torstein Husebø

	Warren Togami

	Wladimir J. van der Laan

	Yoichi Hirai

 <no title>

 Version 0.3.17 is now available.

Changes:

	new getwork, thanks m0mchil

	added transaction fee setting in UI options menu

	free transaction limits

	sendtoaddress returns transaction id instead of “sent”

	getaccountaddress

 <no title>

 There’s more work to do on DoS, but I’m doing a quick build of what I have so far in case it’s needed, before venturing into more complex ideas. The build for this is version 0.3.19.

	Added some DoS controls
As Gavin and I have said clearly before, the software is not at all resistant to DoS attack. This is one improvement, but there are still more ways to attack than I can count.

I’m leaving the -limitfreerelay part as a switch for now and it’s there if you need it.

	Removed “safe mode” alerts
“safe mode” alerts was a temporary measure after the 0.3.9 overflow bug. We can say all we want that users can just run with “-disablesafemode”, but it’s better just not to have it for the sake of appearances. It was never intended as a long term feature. Safe mode can still be triggered by seeing a longer (greater total PoW) invalid block chain.

 How to Upgrade

 Bitcoin version 0.7.2 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.2

This is a bug-fix minor release.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using an
Ubuntu PPA version), then run the old version again with the -detachdb
argument and shut it down; if you do not, then the new version will not
be able to read the database files and will exit with an error.

Explanation of -detachdb (and the new “stop true” RPC command):
The Berkeley DB database library stores data in both ”.dat” and
“log” files, so the database is always in a consistent state,
even in case of power failure or other sudden shutdown. The
format of the ”.dat” files is portable between different
versions of Berkeley DB, but the “log” files are not– even minor
version differences may have incompatible “log” files. The
-detachdb option moves any pending changes from the “log” files
to the “blkindex.dat” file for maximum compatibility, but makes
shutdown much slower. Note that the “wallet.dat” file is always
detached, and versions prior to 0.6.0 detached all databases
at shutdown.

Bug fixes

	Prevent RPC ‘move’ from deadlocking. This was caused by trying to lock the
database twice.

	Fix use-after-free problems in initialization and shutdown, the latter of
which caused Bitcoin-Qt to crash on Windows when exiting.

	Correct library linking so building on Windows natively works.

	Avoid a race condition and out-of-bounds read in block creation/mining code.

	Improve platform compatibility quirks, including fix for 100% CPU utilization
on FreeBSD 9.

	A few minor corrections to error handling, and updated translations.

	OSX 10.5 supported again

Thanks to everybody who contributed to this release:

Alex
dansmith
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Luke Dashjr
Philip Kaufmann
Pieter Wuille
Wladimir J. van der Laan
grimd34th

 Upgrading and downgrading

 Bitcoin Core version 0.9.3 is now available from:

https://bitcoin.org/bin/0.9.3/

This is a new minor version release, bringing only bug fixes and updated
translations. Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.3 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

0.9.3 Release notes

RPC:

	Avoid a segfault on getblock if it can’t read a block from disk

	Add paranoid return value checks in base58

Protocol and network code:

	Don’t poll showmyip.com, it doesn’t exist anymore

	Add a way to limit deserialized string lengths and use it

	Add a new checkpoint at block 295,000

	Increase IsStandard() scriptSig length

	Avoid querying DNS seeds, if we have open connections

	Remove a useless millisleep in socket handler

	Stricter memory limits on CNode

	Better orphan transaction handling

	Add -maxorphantx=<n> and -maxorphanblocks=<n> options for control over the maximum orphan transactions and blocks

Wallet:

	Check redeemScript size does not exceed 520 byte limit

	Ignore (and warn about) too-long redeemScripts while loading wallet

GUI:

	fix ‘opens in testnet mode when presented with a BIP-72 link with no fallback’

	AvailableCoins: acquire cs_main mutex

	Fix unicode character display on MacOSX

Miscellaneous:

	key.cpp: fail with a friendlier message on missing ssl EC support

	Remove bignum dependency for scripts

	Upgrade OpenSSL to 1.0.1i (see https://www.openssl.org/news/secadv_20140806.txt - just to be sure, no critical issues for Bitcoin Core)

	Upgrade miniupnpc to 1.9.20140701

	Fix boost detection in build system on some platforms

Credits

Thanks to everyone who contributed to this release:

	Andrew Poelstra

	Cory Fields

	Gavin Andresen

	Jeff Garzik

	Johnathan Corgan

	Julian Haight

	Michael Ford

	Pavel Vasin

	Peter Todd

	phantomcircuit

	Pieter Wuille

	Rose Toomey

	Ruben Dario Ponticelli

	shshshsh

	Trevin Hofmann

	Warren Togami

	Wladimir J. van der Laan

	Zak Wilcox

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 How to Upgrade

 Bitcoin Core version 0.9.2.1 is now available from:

https://bitcoin.org/bin/0.9.2.1/

This is a new minor version release, bringing mostly bug fixes and some minor
improvements. OpenSSL has been updated because of a security issue (CVE-2014-0224).
Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.2.1 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9.x and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

Important changes

Gitian OSX build

The deterministic build system that was already used for Windows and Linux
builds is now used for OSX as well. Although the resulting executables have
been tested quite a bit, there could be possible regressions. Be sure to report
these on the Github bug tracker mentioned above.

Compatibility of Linux build

For Linux we now build against Qt 4.6, and filter the symbols for libstdc++ and glibc.
This brings back compatibility with

	Debian 6+ / Tails

	Ubuntu 10.04

	CentOS 6.5

0.9.2 - 0.9.2.1 Release notes

The OpenSSL dependency in the gitian builds has been upgraded to 1.0.1h because of CVE-2014-0224.

RPC:

	Add getwalletinfo, getblockchaininfo and getnetworkinfo calls (will replace hodge-podge getinfo at some point)

	Add a relayfee field to getnetworkinfo

	Fix RPC related shutdown hangs and leaks

	Always show syncnode in getpeerinfo

	sendrawtransaction: report the reject code and reason, and make it possible to re-send transactions that are already in the mempool

	getmininginfo show right genproclimit

Command-line options:

	Fix -printblocktree output

	Show error message if ReadConfigFile fails

Block-chain handling and storage:

	Fix for GetBlockValue() after block 13,440,000 (BIP42)

	Upgrade leveldb to 1.17

Protocol and network code:

	Per-peer block download tracking and stalled download detection

	Add new DNS seed from bitnodes.io

	Prevent socket leak in ThreadSocketHandler and correct some proxy related socket leaks

	Use pnode->nLastRecv as sync score (was the wrong way around)

Wallet:

	Make GetAvailableCredit run GetHash() only once per transaction (performance improvement)

	Lower paytxfee warning threshold from 0.25 BTC to 0.01 BTC

	Fix importwallet nTimeFirstKey (trigger necessary rescans)

	Log BerkeleyDB version at startup

	CWallet init fix

Build system:

	Add OSX build descriptors to gitian

	Fix explicit –disable-qt-dbus

	Don’t require db_cxx.h when compiling with wallet disabled and GUI enabled

	Improve missing boost error reporting

	Upgrade miniupnpc version to 1.9

	gitian-linux: –enable-glibc-back-compat for binary compatibility with old distributions

	gitian: don’t export any symbols from executable

	gitian: build against Qt 4.6

	devtools: add script to check symbols from Linux gitian executables

	Remove build-time no-IPv6 setting

GUI:

	Fix various coin control visual issues

	Show number of in/out connections in debug console

	Show weeks as well as years behind for long timespans behind

	Enable and disable the Show and Remove buttons for requested payments history based on whether any entry is selected.

	Show also value for options overridden on command line in options dialog

	Fill in label from address book also for URIs

	Fixes feel when resizing the last column on tables (issue #2862)

	Fix ESC in disablewallet mode

	Add expert section to wallet tab in optionsdialog

	Do proper boost::path conversion (fixes unicode in datadir)

	Only override -datadir if different from the default (fixes -datadir in config file)

	Show rescan progress at start-up

	Show importwallet progress

	Get required locks upfront in polling functions (avoids hanging on locks)

	Catch Windows shutdown events while client is running

	Optionally add third party links to transaction context menu

	Check for !pixmap() before trying to export QR code (avoids crashes when no QR code could be generated)

	Fix “Start bitcoin on system login”

Miscellaneous:

	Replace non-threadsafe C functions (gmtime, strerror and setlocale)

	Add missing cs_main and wallet locks

	Avoid exception at startup when system locale not recognized

	Changed bitrpc.py’s raw_input to getpass for passwords to conceal characters during command line input

	devtools: add a script to fetch and postprocess translations

Credits

Thanks to everyone who contributed to this release:

	Addy Yeow

	Altoidnerd

	Andrea D’Amore

	Andreas Schildbach

	Bardi Harborow

	Brandon Dahler

	Bryan Bishop

	Chris Beams

	Christian von Roques

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Newton

	David A. Harding

	ditto-b

	duanemoody

	Eric S. Bullington

	Fabian Raetz

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Haakon Nilsen

	harry

	Hector Jusforgues

	Isidoro Ghezzi

	Jeff Garzik

	Johnathan Corgan

	jtimon

	Kamil Domanski

	langerhans

	Luke Dashjr

	Manuel Araoz

	Mark Friedenbach

	Matt Corallo

	Matthew Bogosian

	Meeh

	Michael Ford

	Michagogo

	Mikael Wikman

	Mike Hearn

	olalonde

	paveljanik

	peryaudo

	Philip Kaufmann

	philsong

	Pieter Wuille

	R E Broadley

	richierichrawr

	Rune K. Svendsen

	rxl

	shshshsh

	Simon de la Rouviere

	Stuart Cardall

	super3

	Telepatheic

	Thomas Zander

	Torstein Husebø

	Warren Togami

	Wladimir J. van der Laan

	Yoichi Hirai

 Upgrading and downgrading

 Bitcoin Core version 0.11.2 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.11.2/

This is a new minor version release, bringing bug fixes, the BIP65
(CLTV) consensus change, and relay policy preparation for BIP113. It is
recommended to upgrade to this version as soon as possible.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility. There are no
known problems when downgrading from 0.11.x to 0.10.x.

Notable changes since 0.11.1

BIP65 soft fork to enforce OP_CHECKLOCKTIMEVERIFY opcode

This release includes several changes related to the BIP65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki] soft fork
which redefines the existing OP_NOP2 opcode as OP_CHECKLOCKTIMEVERIFY
(CLTV) so that a transaction output can be made unspendable until a
specified point in the future.

	This release will only relay and mine transactions spending a CLTV
output if they comply with the BIP65 rules as provided in code.

	This release will produce version 4 blocks by default. Please see the
notice to miners below.

	Once 951 out of a sequence of 1,001 blocks on the local node’s best block
chain contain version 4 (or higher) blocks, this release will no
longer accept new version 3 blocks and it will only accept version 4
blocks if they comply with the BIP65 rules for CLTV.

For more information about the soft-forking change, please see
https://github.com/bitcoin/bitcoin/pull/6351

Graphs showing the progress towards block version 4 adoption may be
found at the URLs below:

	Block versions over the last 50,000 blocks as progress towards BIP65
consensus enforcement: http://bitcoin.sipa.be/ver-50k.png

	Block versions over the last 2,000 blocks showing the days to the
earliest possible BIP65 consensus-enforced block: http://bitcoin.sipa.be/ver-2k.png

Notice to miners: Bitcoin Core’s block templates are now for
version 4 blocks only, and any mining software relying on its
getblocktemplate must be updated in parallel to use libblkmaker either
version 0.4.3 or any version from 0.5.2 onward.

	If you are solo mining, this will affect you the moment you upgrade
Bitcoin Core, which must be done prior to BIP65 achieving its 951/1001
status.

	If you are mining with the stratum mining protocol: this does not
affect you.

	If you are mining with the getblocktemplate protocol to a pool: this
will affect you at the pool operator’s discretion, which must be no
later than BIP65 achieving its 951/1001 status.

BIP113 mempool-only locktime enforcement using GetMedianTimePast()

Bitcoin transactions currently may specify a locktime indicating when
they may be added to a valid block. Current consensus rules require
that blocks have a block header time greater than the locktime specified
in any transaction in that block.

Miners get to choose what time they use for their header time, with the
consensus rule being that no node will accept a block whose time is more
than two hours in the future. This creates a incentive for miners to
set their header times to future values in order to include locktimed
transactions which weren’t supposed to be included for up to two more
hours.

The consensus rules also specify that valid blocks may have a header
time greater than that of the median of the 11 previous blocks. This
GetMedianTimePast() time has a key feature we generally associate with
time: it can’t go backwards.

BIP113 [https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki] specifies a soft fork (not enforced in this release) that
weakens this perverse incentive for individual miners to use a future
time by requiring that valid blocks have a computed GetMedianTimePast()
greater than the locktime specified in any transaction in that block.

Mempool inclusion rules currently require transactions to be valid for
immediate inclusion in a block in order to be accepted into the mempool.
This release begins applying the BIP113 rule to received transactions,
so transaction whose time is greater than the GetMedianTimePast() will
no longer be accepted into the mempool.

Implication for miners: you will begin rejecting transactions that
would not be valid under BIP113, which will prevent you from producing
invalid blocks if/when BIP113 is enforced on the network. Any
transactions which are valid under the current rules but not yet valid
under the BIP113 rules will either be mined by other miners or delayed
until they are valid under BIP113. Note, however, that time-based
locktime transactions are more or less unseen on the network currently.

Implication for users: GetMedianTimePast() always trails behind the
current time, so a transaction locktime set to the present time will be
rejected by nodes running this release until the median time moves
forward. To compensate, subtract one hour (3,600 seconds) from your
locktimes to allow those transactions to be included in mempools at
approximately the expected time.

Windows bug fix for corrupted UTXO database on unclean shutdowns

Several Windows users reported that they often need to reindex the
entire blockchain after an unclean shutdown of Bitcoin Core on Windows
(or an unclean shutdown of Windows itself). Although unclean shutdowns
remain unsafe, this release no longer relies on memory-mapped files for
the UTXO database, which significantly reduced the frequency of unclean
shutdowns leading to required reindexes during testing.

For more information, see: https://github.com/bitcoin/bitcoin/pull/6917

Other fixes for database corruption on Windows are expected in the
next major release.

0.11.2 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

	#6124 684636b Make CScriptNum() take nMaxNumSize as an argument

	#6124 4fa7a04 Replace NOP2 with CHECKLOCKTIMEVERIFY (BIP65)

	#6124 6ea5ca4 Enable CHECKLOCKTIMEVERIFY as a standard script verify flag

	#6351 5e82e1c Add CHECKLOCKTIMEVERIFY (BIP65) soft-fork logic

	#6353 ba1da90 Show softfork status in getblockchaininfo

	#6351 6af25b0 Add BIP65 to getblockchaininfo softforks list

	#6688 01878c9 Fix locking in GetTransaction

	#6653 b3eaa30 [Qt] Raise debug window when requested

	#6600 1e672ae Debian/Ubuntu: Include bitcoin-tx binary

	#6600 2394f4d Debian/Ubuntu: Split bitcoin-tx into its own package

	#5987 33d6825 Bugfix: Allow mining on top of old tip blocks for testnet

	#6852 21e58b8 build: make sure OpenSSL heeds noexecstack

	#6846 af6edac alias -h for --help

	#6867 95a5039 Set TCP_NODELAY on P2P sockets.

	#6856 dfe55bd Do not allow blockfile pruning during reindex.

	#6566 a1d3c6f Add rules–presently disabled–for using GetMedianTimePast as end point for lock-time calculations

	#6566 f720c5f Enable policy enforcing GetMedianTimePast as the end point of lock-time constraints

	#6917 0af5b8e leveldb: Win32WritableFile without memory mapping

	#6948 4e895b0 Always flush block and undo when switching to new file

Credits

Thanks to everyone who directly contributed to this release:

	Alex Morcos

	฿tcDrak

	Chris Kleeschulte

	Daniel Cousens

	Diego Viola

	Eric Lombrozo

	Esteban Ordano

	Gregory Maxwell

	Luke Dashjr

	Marco Falke

	Mark Friedenbach

	Matt Corallo

	Micha

	Mitchell Cash

	Peter Todd

	Pieter Wuille

	Wladimir J. van der Laan

	Zak Wilcox

And those who contributed additional code review and/or security research.

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 How to Upgrade

 Bitcoin Core version 0.9.0 is now available from:

https://bitcoin.org/bin/0.9.0/

This is a new major version release, bringing both new features and
bug fixes.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), uninstall all
earlier versions of Bitcoin, then run the installer (on Windows) or just copy
over /Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you run
0.9.0 your blockchain files will be re-indexed, which will take anywhere from
30 minutes to several hours, depending on the speed of your machine.

On Windows, do not forget to uninstall all earlier versions of the Bitcoin
client first, especially if you are switching to the 64-bit version.

Windows 64-bit installer

New in 0.9.0 is the Windows 64-bit version of the client. There have been
frequent reports of users running out of virtual memory on 32-bit systems
during the initial sync. Because of this it is recommended to install the
64-bit version if your system supports it.

NOTE: Release candidate 2 Windows binaries are not code-signed; use PGP
and the SHA256SUMS.asc file to make sure your binaries are correct.
In the final 0.9.0 release, Windows setup.exe binaries will be code-signed.

OSX 10.5 / 32-bit no longer supported

0.9.0 drops support for older Macs. The minimum requirements are now:

	A 64-bit-capable CPU (see http://support.apple.com/kb/ht3696);

	Mac OS 10.6 or later (see https://support.apple.com/kb/ht1633).

Downgrading warnings

The ‘chainstate’ for this release is not always compatible with previous
releases, so if you run 0.9 and then decide to switch back to a
0.8.x release you might get a blockchain validation error when starting the
old release (due to ‘pruned outputs’ being omitted from the index of
unspent transaction outputs).

Running the old release with the -reindex option will rebuild the chainstate
data structures and correct the problem.

Also, the first time you run a 0.8.x release on a 0.9 wallet it will rescan
the blockchain for missing spent coins, which will take a long time (tens
of minutes on a typical machine).

Rebranding to Bitcoin Core

To reduce confusion between Bitcoin-the-network and Bitcoin-the-software we
have renamed the reference client to Bitcoin Core.

OP_RETURN and data in the block chain

On OP_RETURN: There was been some confusion and misunderstanding in
the community, regarding the OP_RETURN feature in 0.9 and data in the
blockchain. This change is not an endorsement of storing data in the
blockchain. The OP_RETURN change creates a provably-prunable output,
to avoid data storage schemes – some of which were already deployed –
that were storing arbitrary data such as images as forever-unspendable
TX outputs, bloating bitcoin’s UTXO database.

Storing arbitrary data in the blockchain is still a bad idea; it is less
costly and far more efficient to store non-currency data elsewhere.

Autotools build system

For 0.9.0 we switched to an autotools-based build system instead of individual
(q)makefiles.

Using the standard ”./autogen.sh; ./configure; make” to build Bitcoin-Qt and
bitcoind makes it easier for experienced open source developers to contribute
to the project.

Be sure to check doc/build-*.md for your platform before building from source.

Bitcoin-cli

Another change in the 0.9 release is moving away from the bitcoind executable
functioning both as a server and as a RPC client. The RPC client functionality
(“tell the running bitcoin daemon to do THIS”) was split into a separate
executable, ‘bitcoin-cli’. The RPC client code will eventually be removed from
bitcoind, but will be kept for backwards compatibility for a release or two.

walletpassphrase RPC

The behavior of the walletpassphrase RPC when the wallet is already unlocked
has changed between 0.8 and 0.9.

The 0.8 behavior of walletpassphrase is to fail when the wallet is already unlocked:

> walletpassphrase 1000
walletunlocktime = now + 1000
> walletpassphrase 10
Error: Wallet is already unlocked (old unlock time stays)

The new behavior of walletpassphrase is to set a new unlock time overriding
the old one:

> walletpassphrase 1000
walletunlocktime = now + 1000
> walletpassphrase 10
walletunlocktime = now + 10 (overriding the old unlock time)

Transaction malleability-related fixes

This release contains a few fixes for transaction ID (TXID) malleability
issues:

	-nospendzeroconfchange command-line option, to avoid spending
zero-confirmation change

	IsStandard() transaction rules tightened to prevent relaying and mining of
mutated transactions

	Additional information in listtransactions/gettransaction output to
report wallet transactions that conflict with each other because
they spend the same outputs.

	Bug fixes to the getbalance/listaccounts RPC commands, which would report
incorrect balances for double-spent (or mutated) transactions.

	New option: -zapwallettxes to rebuild the wallet’s transaction information

Transaction Fees

This release drops the default fee required to relay transactions across the
network and for miners to consider the transaction in their blocks to
0.01mBTC per kilobyte.

Note that getting a transaction relayed across the network does NOT guarantee
that the transaction will be accepted by a miner; by default, miners fill
their blocks with 50 kilobytes of high-priority transactions, and then with
700 kilobytes of the highest-fee-per-kilobyte transactions.

The minimum relay/mining fee-per-kilobyte may be changed with the
minrelaytxfee option. Note that previous releases incorrectly used
the mintxfee setting to determine which low-priority transactions should
be considered for inclusion in blocks.

The wallet code still uses a default fee for low-priority transactions of
0.1mBTC per kilobyte. During periods of heavy transaction volume, even this
fee may not be enough to get transactions confirmed quickly; the mintxfee
option may be used to override the default.

0.9.0 Release notes

RPC:

	New notion of ‘conflicted’ transactions, reported as confirmations: -1

	‘listreceivedbyaddress’ now provides tx ids

	Add raw transaction hex to ‘gettransaction’ output

	Updated help and tests for ‘getreceivedby(account|address)’

	In ‘getblock’, accept 2nd ‘verbose’ parameter, similar to getrawtransaction,
but defaulting to 1 for backward compatibility

	Add ‘verifychain’, to verify chain database at runtime

	Add ‘dumpwallet’ and ‘importwallet’ RPCs

	‘keypoolrefill’ gains optional size parameter

	Add ‘getbestblockhash’, to return tip of best chain

	Add ‘chainwork’ (the total work done by all blocks since the genesis block)
to ‘getblock’ output

	Make RPC password resistant to timing attacks

	Clarify help messages and add examples

	Add ‘getrawchangeaddress’ call for raw transaction change destinations

	Reject insanely high fees by default in ‘sendrawtransaction’

	Add RPC call ‘decodescript’ to decode a hex-encoded transaction script

	Make ‘validateaddress’ provide redeemScript

	Add ‘getnetworkhashps’ to get the calculated network hashrate

	New RPC ‘ping’ command to request ping, new ‘pingtime’ and ‘pingwait’ fields
in ‘getpeerinfo’ output

	Adding new ‘addrlocal’ field to ‘getpeerinfo’ output

	Add verbose boolean to ‘getrawmempool’

	Add rpc command ‘getunconfirmedbalance’ to obtain total unconfirmed balance

	Explicitly ensure that wallet is unlocked in importprivkey

	Add check for valid keys in importprivkey

Command-line options:

	New option: -nospendzeroconfchange to never spend unconfirmed change outputs

	New option: -zapwallettxes to rebuild the wallet’s transaction information

	Rename option ‘-tor’ to ‘-onion’ to better reflect what it does

	Add ‘-disablewallet’ mode to let bitcoind run entirely without wallet (when
built with wallet)

	Update default ‘-rpcsslciphers’ to include TLSv1.2

	make ‘-logtimestamps’ default on and rework help-message

	RPC client option: ‘-rpcwait’, to wait for server start

	Remove ‘-logtodebugger’

	Allow -noserver with bitcoind

Block-chain handling and storage:

	Update leveldb to 1.15

	Check for correct genesis (prevent cases where a datadir from the wrong
network is accidentally loaded)

	Allow txindex to be removed and add a reindex dialog

	Log aborted block database rebuilds

	Store orphan blocks in serialized form, to save memory

	Limit the number of orphan blocks in memory to 750

	Fix non-standard disconnected transactions causing mempool orphans

	Add a new checkpoint at block 279,000

Wallet:

	Bug fixes and new regression tests to correctly compute
the balance of wallets containing double-spent (or mutated) transactions

	Store key creation time. Calculate whole-wallet birthday.

	Optimize rescan to skip blocks prior to birthday

	Let user select wallet file with -wallet=foo.dat

	Consider generated coins mature at 101 instead of 120 blocks

	Improve wallet load time

	Don’t count txins for priority to encourage sweeping

	Don’t create empty transactions when reading a corrupted wallet

	Fix rescan to start from beginning after importprivkey

	Only create signatures with low S values

Mining:

	Increase default -blockmaxsize/prioritysize to 750K/50K

	‘getblocktemplate’ does not require a key to create a block template

	Mining code fee policy now matches relay fee policy

Protocol and network:

	Drop the fee required to relay a transaction to 0.01mBTC per kilobyte

	Send tx relay flag with version

	New ‘reject’ P2P message (BIP 0061, see
https://gist.github.com/gavinandresen/7079034 for draft)

	Dump addresses every 15 minutes instead of 10 seconds

	Relay OP_RETURN data TxOut as standard transaction type

	Remove CENT-output free transaction rule when relaying

	Lower maximum size for free transaction creation

	Send multiple inv messages if mempool.size > MAX_INV_SZ

	Split MIN_PROTO_VERSION into INIT_PROTO_VERSION and MIN_PEER_PROTO_VERSION

	Do not treat fFromMe transaction differently when broadcasting

	Process received messages one at a time without sleeping between messages

	Improve logging of failed connections

	Bump protocol version to 70002

	Add some additional logging to give extra network insight

	Added new DNS seed from bitcoinstats.com

Validation:

	Log reason for non-standard transaction rejection

	Prune provably-unspendable outputs, and adapt consistency check for it.

	Detect any sufficiently long fork and add a warning

	Call the -alertnotify script when we see a long or invalid fork

	Fix multi-block reorg transaction resurrection

	Reject non-canonically-encoded serialization sizes

	Reject dust amounts during validation

	Accept nLockTime transactions that finalize in the next block

Build system:

	Switch to autotools-based build system

	Build without wallet by passing --disable-wallet to configure, this
removes the BerkeleyDB dependency

	Upgrade gitian dependencies (libpng, libz, libupnpc, boost, openssl) to more
recent versions

	Windows 64-bit build support

	Solaris compatibility fixes

	Check integrity of gitian input source tarballs

	Enable full GCC Stack-smashing protection for all OSes

GUI:

	Switch to Qt 5.2.0 for Windows build

	Add payment request (BIP 0070) support

	Improve options dialog

	Show transaction fee in new send confirmation dialog

	Add total balance in overview page

	Allow user to choose data directory on first start, when data directory is
missing, or when the -choosedatadir option is passed

	Save and restore window positions

	Add vout index to transaction id in transactions details dialog

	Add network traffic graph in debug window

	Add open URI dialog

	Add Coin Control Features

	Improve receive coins workflow: make the ‘Receive’ tab into a form to request
payments, and move historical address list functionality to File menu.

	Rebrand to Bitcoin Core

	Move initialization/shutdown to a thread. This prevents “Not responding”
messages during startup. Also show a window during shutdown.

	Don’t regenerate autostart link on every client startup

	Show and store message of normal bitcoin:URI

	Fix richtext detection hang issue on very old Qt versions

	OS X: Make use of the 10.8+ user notification center to display Growl-like
notifications

	OS X: Added NSHighResolutionCapable flag to Info.plist for better font
rendering on Retina displays.

	OS X: Fix bitcoin-qt startup crash when clicking dock icon

	Linux: Fix Gnome bitcoin: URI handler

Miscellaneous:

	Add Linux script (contrib/qos/tc.sh) to limit outgoing bandwidth

	Add ‘-regtest’ mode, similar to testnet but private with instant block
generation with ‘setgenerate’ RPC.

	Add ‘linearize.py’ script to contrib, for creating bootstrap.dat

	Add separate bitcoin-cli client

Credits

Thanks to everyone who contributed to this release:

	Andrey

	Ashley Holman

	b6393ce9-d324-4fe1-996b-acf82dbc3d53

	bitsofproof

	Brandon Dahler

	Calvin Tam

	Christian Decker

	Christian von Roques

	Christopher Latham

	Chuck

	coblee

	constantined

	Cory Fields

	Cozz Lovan

	daniel

	Daniel Larimer

	David Hill

	Dmitry Smirnov

	Drak

	Eric Lombrozo

	fanquake

	fcicq

	Florin

	frewil

	Gavin Andresen

	Gregory Maxwell

	gubatron

	Guillermo Céspedes Tabárez

	Haakon Nilsen

	HaltingState

	Han Lin Yap

	harry

	Ian Kelling

	Jeff Garzik

	Johnathan Corgan

	Jonas Schnelli

	Josh Lehan

	Josh Triplett

	Julian Langschaedel

	Kangmo

	Lake Denman

	Luke Dashjr

	Mark Friedenbach

	Matt Corallo

	Michael Bauer

	Michael Ford

	Michagogo

	Midnight Magic

	Mike Hearn

	Nils Schneider

	Noel Tiernan

	Olivier Langlois

	patrick s

	Patrick Strateman

	paveljanik

	Peter Todd

	phantomcircuit

	phelixbtc

	Philip Kaufmann

	Pieter Wuille

	Rav3nPL

	R E Broadley

	regergregregerrge

	Robert Backhaus

	Roman Mindalev

	Rune K. Svendsen

	Ryan Niebur

	Scott Ellis

	Scott Willeke

	Sergey Kazenyuk

	Shawn Wilkinson

	Sined

	sje

	Subo1978

	super3

	Tamas Blummer

	theuni

	Thomas Holenstein

	Timon Rapp

	Timothy Stranex

	Tom Geller

	Torstein Husebø

	Vaclav Vobornik

	vhf / victor felder

	Vinnie Falco

	Warren Togami

	Wil Bown

	Wladimir J. van der Laan

 <no title>

 bitcoind and Bitcoin-Qt version 0.5.5 are now available for download at:
Windows: installer | zip (sig)
Source: tar.gz
bitcoind and Bitcoin-Qt version 0.6.0.7 are also tagged in git, but it is recommended to upgrade to 0.6.1.

These are bugfix-only releases.

Please report bugs by replying to this forum thread. Note that the 0.4.x wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

BUG FIXES

Version 0.6.0 allowed importing invalid “private keys”, which would be unspendable; 0.6.0.7 will now verify the private key is valid, and refuse to import an invalid one
Verify status of encrypt/decrypt calls to detect failed padding
Check blocks for duplicate transactions earlier. Fixes #1167
Upgrade Windows builds to OpenSSL 1.0.1b
Set label when selecting an address that already has a label. Fixes #1080 (Bitcoin-Qt)
JSON-RPC listtransactions’s from/count handling is now fixed
Optimize and fix multithreaded access, when checking whether we already know about transactions
Fix potential networking deadlock
Proper support for Growl 1.3 notifications
Display an error, rather than crashing, if encoding a QR Code failed (0.6.0.7)
Don’t erroneously set “Display addresses” for users who haven’t explicitly enabled it (Bitcoin-Qt)
Some non-ASCII input in JSON-RPC expecting hexadecimal may have been misinterpreted rather than rejected
Missing error condition checking added
Do not show green tick unless all known blocks are downloaded. Fixes #921 (Bitcoin-Qt)
Increase time ago of last block for “up to date” status from 30 to 90 minutes
Show a message box when runaway exception happens (Bitcoin-Qt)
Use a messagebox to display the error when -server is provided without providing a rpc password
Show error message instead of exception crash when unable to bind RPC port (Bitcoin-Qt)
Correct sign message bitcoin address tooltip. Fixes #1050 (Bitcoin-Qt)
Removed “(no label)” from QR Code dialog titlebar if we have no label (0.6.0.7)
Removed an ugly line break in tooltip for mature transactions (0.6.0.7)
Add missing tooltip and key shortcut in settings dialog (part of #1088) (Bitcoin-Qt)
Work around issue in boost::program_options that prevents from compiling in clang
Fixed bugs occurring only on platforms with unsigned characters (such as ARM).
Rename make_windows_icon.py to .sh as it is a shell script. Fixes #1099 (Bitcoin-Qt)
Various trivial internal corrections to types used for counting/size loops and warnings

 How to Upgrade

 Bitcoin-Qt version 0.8.4 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.4/

This is a maintenance release to fix a critical bug and three
security issues; we urge all users to upgrade.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.4 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.4 Release notes

Security issues

An attacker could send a series of messages that resulted in
an integer division-by-zero error in the Bloom Filter handling
code, causing the Bitcoin-Qt or bitcoind process to crash.
Bloom filters were introduced with version 0.8, so versions 0.8.0
through 0.8.3 are vulnerable to this critical denial-of-service attack.

A constant-time algorithm is now used to check RPC password
guess attempts; fixes https://github.com/bitcoin/bitcoin/issues/2838
(CVE-2013-4165)

Implement a better fix for the fill-memory-with-orphan-transactions
attack that was fixed in 0.8.3. See
https://bitslog.wordpress.com/2013/07/18/buggy-cve-2013-4627-patch-open-new-vectors-of-attack/
for a description of the weaknesses of the previous fix.
(CVE-2013-4627)

Bugs fixed

Fix multi-block reorg transaction resurrection.

Fix non-standard disconnected transactions causing mempool orphans.
This bug could cause nodes running with the -debug flag to crash.

OSX: use ‘FD_FULLSYNC’ with LevelDB, which will (hopefully!)
prevent the database corruption issues many people have
experienced on OSX.

Linux: clicking on bitcoin: links was broken if you were using
a Gnome-based desktop.

Fix a hang-at-shutdown bug that only affects users that compile
their own version of Bitcoin against Boost versions 1.50-1.52.

Other changes

Checkpoint at block 250,000 to speed up initial block downloads
and make the progress indicator when downloading more accurate.

Thanks to everybody who contributed to the 0.8.4 releases!

Pieter Wuille
Warren Togami
Patrick Strateman
pakt
Gregory Maxwell
Sergio Demian Lerner
grayleonard
Cory Fields
Matt Corallo
Gavin Andresen

 <no title>

 Never released or release notes were lost.

 <no title>

 Bitcoin-Qt version 0.8.3 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.3/

This is a maintenance release to fix a denial-of-service attack that
can cause nodes to crash.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

0.8.3 Release notes

Truncate over-size messages to prevent a memory exhaustion attack.

Fix a regression that causes excessive re-writing of the ‘peers.dat’ file.

Thanks to Peter Todd for responsibly disclosing the vulnerability
(CVE-2013-4627) and creating a fix.

 <no title>

 Bitcoin version 0.5.2 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.2/

This is a bugfix-only release based on 0.5.1.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.2#.tar.gz

BUG FIXES

Check all transactions in blocks after the last checkpoint (0.5.0 and 0.5.1 skipped checking ECDSA signatures during initial blockchain download).
Cease locking memory used by non-sensitive information (this caused a huge performance hit on some platforms, especially noticable during initial blockchain download; this was
not a security vulnerability).
Fixed some address-handling deadlocks (client freezes).
No longer accept inbound connections over the internet when Bitcoin is being used with Tor (identity leak).
Re-enable SSL support for the JSON-RPC interface (it was unintentionally disabled for the 0.5.0 and 0.5.1 release Linux binaries).
Use the correct base transaction fee of 0.0005 BTC for accepting transactions into mined blocks (since 0.4.0, it was incorrectly accepting 0.0001 BTC which was only meant to be relayed).
Don’t show “IP” for transactions which are not necessarily IP transactions.
Add new DNS seeds (maintained by Pieter Wuille and Luke Dashjr).

 <no title>

 Bitcoin version 0.6.3 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.3/

This is a bug-fix release, with no new features.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

CHANGE SUMMARY

Fixed a serious denial-of-service attack that could cause the
bitcoin process to become unresponsive. Thanks to Sergio Lerner
for finding and responsibly reporting the problem. (CVE-2012-3789)

Optimized the process of checking transaction signatures, to
speed up processing of new block messages and make propagating
blocks across the network faster.

Fixed an obscure bug that could cause the bitcoin process to get
stuck on an invalid block-chain, if the invalid chain was
hundreds of blocks long.

Bitcoin-Qt no longer automatically selects the first address
in the address book (Issue #1384).

Fixed minimize-to-dock behavior of Bitcoin-Qt on the Mac.

Added a block checkpoint at block 185,333 to speed up initial
blockchain download.

 <no title>

	paytxfee switch is now per KB, so it adds the correct fee for large transactions

	sending avoids using coins with less than 6 confirmations if it can

	BitcoinMiner processes transactions in priority order based on age of dependencies

	make sure generation doesn’t start before block 74000 downloaded

	bugfixes by Dean Gores

	testnet, keypoololdest and paytxfee added to getinfo

 Compatibility

 Bitcoin Core version 0.13.2 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.13.2/

This is a new minor version release, including various bugfixes and
performance improvements, as well as updated translations.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

To receive security and update notifications, please subscribe to:

https://bitcoincore.org/en/list/announcements/join/

Compatibility

Microsoft ended support for Windows XP on April 8th, 2014 [https://www.microsoft.com/en-us/WindowsForBusiness/end-of-xp-support],
an OS initially released in 2001. This means that not even critical security
updates will be released anymore. Without security updates, using a bitcoin
wallet on a XP machine is irresponsible at least.

In addition to that, with 0.12.x there have been varied reports of Bitcoin Core
randomly crashing on Windows XP. It is not clear [https://github.com/bitcoin/bitcoin/issues/7681#issuecomment-217439891]
what the source of these crashes is, but it is likely that upstream
libraries such as Qt are no longer being tested on XP.

We do not have time nor resources to provide support for an OS that is
end-of-life. From 0.13.0 on, Windows XP is no longer supported. Users are
suggested to upgrade to a newer version of Windows, or install an alternative OS
that is supported.

No attempt is made to prevent installing or running the software on Windows XP,
you can still do so at your own risk, but do not expect it to work: do not
report issues about Windows XP to the issue tracker.

From 0.13.1 onwards OS X 10.7 is no longer supported. 0.13.0 was intended to work on 10.7+,
but severe issues with the libc++ version on 10.7.x keep it from running reliably.
0.13.1 now requires 10.8+, and will communicate that to 10.7 users, rather than crashing unexpectedly.

Notable changes

Change to wallet handling of mempool rejection

When a newly created transaction failed to enter the mempool due to
the limits on chains of unconfirmed transactions the sending RPC
calls would return an error. The transaction would still be queued
in the wallet and, once some of the parent transactions were
confirmed, broadcast after the software was restarted.

This behavior has been changed to return success and to reattempt
mempool insertion at the same time transaction rebroadcast is
attempted, avoiding a need for a restart.

Transactions in the wallet which cannot be accepted into the mempool
can be abandoned with the previously existing abandontransaction RPC
(or in the GUI via a context menu on the transaction).

0.13.2 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

Consensus

	#9293 e591c10 [0.13 Backport #9053] IBD using chainwork instead of height and not using header timestamp (gmaxwell)

	#9053 5b93eee IBD using chainwork instead of height and not using header timestamps (gmaxwell)

RPC and other APIs

	#8845 1d048b9 Don’t return the address of a P2SH of a P2SH (jnewbery)

	#9041 87fbced keypoololdest denote Unix epoch, not GMT (s-matthew-english)

	#9122 f82c81b fix getnettotals RPC description about timemillis (visvirial)

	#9042 5bcb05d [rpc] ParseHash: Fail when length is not 64 (MarcoFalke)

	#9194 f26dab7 Add option to return non-segwit serialization via rpc (instagibbs)

	#9347 b711390 [0.13.2] wallet/rpc backports (MarcoFalke)

	#9292 c365556 Complain when unknown rpcserialversion is specified (sipa)

	#9322 49a612f [qa] Don’t set unknown rpcserialversion (MarcoFalke)

Block and transaction handling

	#8357 ce0d817 [mempool] Fix relaypriority calculation error (maiiz)

	#9267 0a4aa87 [0.13 backport #9239] Disable fee estimates for a confirm target of 1 block (morcos)

	#9196 0c09d9f Send tip change notification from invalidateblock (ryanofsky)

P2P protocol and network code

	#8995 9ef3875 Add missing cs_main lock to ::GETBLOCKTXN processing (TheBlueMatt)

	#9234 94531b5 torcontrol: Explicitly request RSA1024 private key (laanwj)

	#8637 2cad5db Compact Block Tweaks (rebase of #8235) (sipa)

	#9058 286e548 Fixes for p2p-compactblocks.py test timeouts on travis (#8842) (ryanofsky)

	#8865 4c71fc4 Decouple peer-processing-logic from block-connection-logic (TheBlueMatt)

	#9117 6fe3981 net: don’t send feefilter messages before the version handshake is complete (theuni)

	#9188 ca1fd75 Make orphan parent fetching ask for witnesses (gmaxwell)

	#9052 3a3bcbf Use RelevantServices instead of node_network in AttemptToEvict (gmaxwell)

	#9048 9460771 [0.13 backport #9026] Fix handling of invalid compact blocks (sdaftuar)

	#9357 03b6f62 [0.13 backport #9352] Attempt reconstruction from all compact block announcements (sdaftuar)

	#9189 b96a8f7 Always add default_witness_commitment with GBT client support (sipa)

	#9253 28d0f22 Fix calculation of number of bound sockets to use (TheBlueMatt)

	#9199 da5a16b Always drop the least preferred HB peer when adding a new one (gmaxwell)

Build system

	#9169 d1b4da9 build: fix qt5.7 build under macOS (theuni)

	#9326 a0f7ece Update for OpenSSL 1.1 API (gmaxwell)

	#9224 396c405 Prevent FD_SETSIZE error building on OpenBSD (ivdsangen)

GUI

	#8972 6f86b53 Make warnings label selectable (jonasschnelli) (MarcoFalke)

	#9185 6d70a73 Fix coincontrol sort issue (jonasschnelli)

	#9094 5f3a12c Use correct conversion function for boost::path datadir (laanwj)

	#8908 4a974b2 Update bitcoin-qt.desktop (s-matthew-english)

	#9190 dc46b10 Plug many memory leaks (laanwj)

Wallet

	#9290 35174a0 Make RelayWalletTransaction attempt to AcceptToMemoryPool (gmaxwell)

	#9295 43bcfca Bugfix: Fundrawtransaction: don’t terminate when keypool is empty (jonasschnelli)

	#9302 f5d606e Return txid even if ATMP fails for new transaction (sipa)

	#9262 fe39f26 Prefer coins that have fewer ancestors, sanity check txn before ATMP (instagibbs)

Tests and QA

	#9159 eca9b46 Wait for specific block announcement in p2p-compactblocks (ryanofsky)

	#9186 dccdc3a Fix use-after-free in scheduler tests (laanwj)

	#9168 3107280 Add assert_raises_message to check specific error message (mrbandrews)

	#9191 29435db 0.13.2 Backports (MarcoFalke)

	#9077 1d4c884 Increase wallet-dump RPC timeout (ryanofsky)

	#9098 ecd7db5 Handle zombies and cluttered tmpdirs (MarcoFalke)

	#8927 387ec9d Add script tests for FindAndDelete in pre-segwit and segwit scripts (jl2012)

	#9200 eebc699 bench: Fix subtle counting issue when rescaling iteration count (laanwj)

Miscellaneous

	#8838 094848b Calculate size and weight of block correctly in CreateNewBlock() (jnewbery)

	#8920 40169dc Set minimum required Boost to 1.47.0 (fanquake)

	#9251 a710a43 Improvement of documentation of command line parameter ‘whitelist’ (wodry)

	#8932 106da69 Allow bitcoin-tx to create v2 transactions (btcdrak)

	#8929 12428b4 add software-properties-common (sigwo)

	#9120 08d1c90 bug: Missed one “return false” in recent refactoring in #9067 (UdjinM6)

	#9067 f85ee01 Fix exit codes (UdjinM6)

	#9340 fb987b3 [0.13] Update secp256k1 subtree (MarcoFalke)

	#9229 b172377 Remove calls to getaddrinfo_a (TheBlueMatt)

Credits

Thanks to everyone who directly contributed to this release:

	Alex Morcos

	BtcDrak

	Cory Fields

	fanquake

	Gregory Maxwell

	Gregory Sanders

	instagibbs

	Ivo van der Sangen

	jnewbery

	Johnson Lau

	Jonas Schnelli

	Luke Dashjr

	maiiz

	MarcoFalke

	Masahiko Hyuga

	Matt Corallo

	matthias

	mrbandrews

	Pavel Janík

	Pieter Wuille

	randy-waterhouse

	Russell Yanofsky

	S. Matthew English

	Steven

	Suhas Daftuar

	UdjinM6

	Wladimir J. van der Laan

	wodry

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 KNOWN ISSUES

 Bitcoin version 0.7.1 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.1/

This is a bug-fix minor release.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; you can get
source-only tarballs/zipballs directly from there:
https://github.com/bitcoin/bitcoin/tarball/v0.7.1 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.7.1 # .zip

Ubuntu Linux users can use the “Personal Package Archive” (PPA)
maintained by Matt Corallo to automatically keep
up-to-date. Just type:
sudo apt-add-repository ppa:bitcoin/bitcoin
sudo apt-get update
in your terminal, then install the bitcoin-qt package:
sudo apt-get install bitcoin-qt

KNOWN ISSUES

Mac OSX 10.5 is no longer supported.

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using an
Ubuntu PPA version), then run the old version again with the -detachdb
argument and shut it down; if you do not, then the new version will not
be able to read the database files and will exit with an error.

Explanation of -detachdb (and the new “stop true” RPC command):
The Berkeley DB database library stores data in both ”.dat” and
“log” files, so the database is always in a consistent state,
even in case of power failure or other sudden shutdown. The
format of the ”.dat” files is portable between different
versions of Berkeley DB, but the “log” files are not– even minor
version differences may have incompatible “log” files. The
-detachdb option moves any pending changes from the “log” files
to the “blkindex.dat” file for maximum compatibility, but makes
shutdown much slower. Note that the “wallet.dat” file is always
detached, and versions prior to 0.6.0 detached all databases
at shutdown.

New features

	Added a boolean argument to the RPC ‘stop’ command, if true sets
-detachdb to create standalone database .dat files before shutting down.

	-salvagewallet command-line option, which moves any existing wallet.dat
to wallet.{timestamp}.dat and then attempts to salvage public/private
keys and master encryption keys (if the wallet is encrypted) into
a new wallet.dat. This should only be used if your wallet becomes
corrupted, and is not intended to replace regular wallet backups.

	Import $DataDir/bootstrap.dat automatically, if it exists.

Dependency changes

	Qt 4.8.2 for Windows builds

	openssl 1.0.1c

Bug fixes

	Clicking on a bitcoin: URI on Windows should now launch Bitcoin-Qt properly.

	When running -testnet, use RPC port 18332 by default.

	Better detection and handling of corrupt wallet.dat and blkindex.dat files.
Previous versions would crash with a DB_RUNRECOVERY exception, this
version detects most problems and tells you how to recover if it
cannot recover itself.

	Fixed an uninitialized variable bug that could cause transactions to
be reported out of order.

	Fixed a bug that could cause occasional crashes on exit.

	Warn the user that they need to create fresh wallet backups after they
encrypt their wallet.

Thanks to everybody who contributed to this release:

Gavin Andresen
Jeff Garzik
Luke Dashjr
Mark Friedenbach
Matt Corallo
Philip Kaufmann
Pieter Wuille
Rune K. Svendsen
Virgil Dupras
Wladimir J. van der Laan
fanquake
kjj2
xanatos

 Compatibility

 Bitcoin Core version 0.14.2 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.14.2/

This is a new minor version release, including various bugfixes and
performance improvements, as well as updated translations.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

To receive security and update notifications, please subscribe to:

https://bitcoincore.org/en/list/announcements/join/

Compatibility

Bitcoin Core is extensively tested on multiple operating systems using
the Linux kernel, macOS 10.8+, and Windows Vista and later.

Microsoft ended support for Windows XP on April 8th, 2014 [https://www.microsoft.com/en-us/WindowsForBusiness/end-of-xp-support],
No attempt is made to prevent installing or running the software on Windows XP, you
can still do so at your own risk but be aware that there are known instabilities and issues.
Please do not report issues about Windows XP to the issue tracker.

Bitcoin Core should also work on most other Unix-like systems but is not
frequently tested on them.

Notable changes

miniupnp CVE-2017-8798

Bundled miniupnpc was updated to 2.0.20170509. This fixes an integer signedness error
(present in MiniUPnPc v1.4.20101221 through v2.0) that allows remote attackers
(within the LAN) to cause a denial of service or possibly have unspecified
other impact.

This only affects users that have explicitly enabled UPnP through the GUI
setting or through the -upnp option, as since the last UPnP vulnerability
(in Bitcoin Core 0.10.3) it has been disabled by default.

If you use this option, it is recommended to upgrade to this version as soon as
possible.

Known Bugs

Since 0.14.0 the approximate transaction fee shown in Bitcoin-Qt when using coin
control and smart fee estimation does not reflect any change in target from the
smart fee slider. It will only present an approximate fee calculated using the
default target. The fee calculated using the correct target is still applied to
the transaction and shown in the final send confirmation dialog.

0.14.2 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

RPC and other APIs

	#10410 321419b Fix importwallet edge case rescan bug (ryanofsky)

P2P protocol and network code

	#10424 37a8fc5 Populate services in GetLocalAddress (morcos)

	#10441 9e3ad50 Only enforce expected services for half of outgoing connections (theuni)

Build system

	#10414 ffb0c4b miniupnpc 2.0.20170509 (fanquake)

	#10228 ae479bc Regenerate bitcoin-config.h as necessary (theuni)

Miscellaneous

	#10245 44a17f2 Minor fix in build documentation for FreeBSD 11 (shigeya)

	#10215 0aee4a1 Check interruptNet during dnsseed lookups (TheBlueMatt)

GUI

	#10231 1e936d7 Reduce a significant cs_main lock freeze (jonasschnelli)

Wallet

	#10294 1847642 Unset change position when there is no change (instagibbs)

Credits

Thanks to everyone who directly contributed to this release:

	Alex Morcos

	Cory Fields

	fanquake

	Gregory Sanders

	Jonas Schnelli

	Matt Corallo

	Russell Yanofsky

	Shigeya Suzuki

	Wladimir J. van der Laan

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Please checkout the git integration branch from:

https://github.com/bitcoin/bitcoin

... and help test. The new features that need testing are:

	-nolisten : https://github.com/bitcoin/bitcoin/pull/11

	-rescan : scan block chain for missing wallet transactions

	-printtoconsole : https://github.com/bitcoin/bitcoin/pull/37

	RPC gettransaction details : https://github.com/bitcoin/bitcoin/pull/24

	listtransactions new features : https://github.com/bitcoin/bitcoin/pull/10

Bug fixes that also need testing:

	-maxconnections= : https://github.com/bitcoin/bitcoin/pull/42

	RPC listaccounts minconf : https://github.com/bitcoin/bitcoin/pull/27

	RPC move, add time to output : https://github.com/bitcoin/bitcoin/pull/21

	...and several improvements to –help output.

This needs more testing on Windows! Please drop me a quick private message, email, or IRC message if you are able to do some testing. If you find bugs, please open an issue at:

https://github.com/bitcoin/bitcoin/issues

 How to Upgrade

 Bitcoin Core version 0.15.0 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.15.0/

This is a new major version release, including new features, various bugfixes
and performance improvements, as well as updated translations.

Please report bugs using the issue tracker at GitHub:

https://github.com/bitcoin/bitcoin/issues

To receive security and update notifications, please subscribe to:

https://bitcoincore.org/en/list/announcements/join/

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac)
or bitcoind/bitcoin-qt (on Linux).

The first time you run version 0.15.0, your chainstate database will be converted to a
new format, which will take anywhere from a few minutes to half an hour,
depending on the speed of your machine.

The file format of fee_estimates.dat changed in version 0.15.0. Hence, a
downgrade from version 0.15.0 or upgrade to version 0.15.0 will cause all fee
estimates to be discarded.

Note that the block database format also changed in version 0.8.0 and there is no
automatic upgrade code from before version 0.8 to version 0.15.0. Upgrading
directly from 0.7.x and earlier without redownloading the blockchain is not supported.
However, as usual, old wallet versions are still supported.

Downgrading warning

The chainstate database for this release is not compatible with previous
releases, so if you run 0.15 and then decide to switch back to any
older version, you will need to run the old release with the -reindex-chainstate
option to rebuild the chainstate data structures in the old format.

If your node has pruning enabled, this will entail re-downloading and
processing the entire blockchain.

Compatibility

Bitcoin Core is extensively tested on multiple operating systems using
the Linux kernel, macOS 10.8+, and Windows Vista and later. Windows XP is not supported.

Bitcoin Core should also work on most other Unix-like systems but is not
frequently tested on them.

Notes for 0.15.0

Current SegWit support

Version 0.15.0 supports adding a segregated witness address via the addwitnessaddress RPC, but
please note that this is a testing/expert RPC, which does not guarantee recovery from backup. Only use
this RPC if you know what you are doing. More complete wallet support for segregated witness is coming
in a next version.

Rescanning with encrypted wallets

As in previous versions, when using an encrypted HD wallet, the keypool cannot be topped up without unlocking
the wallet. This means that currently, in order to recover from a backup of an encrypted HD wallet, the user
must unlock the wallet with a really long timeout and manually trigger a rescan, otherwise they risk missing
some keys when auto-topup cannot run. Unfortunately there is no rescan RPC in this version, that will be
included in a future version, so for now a rescan can be triggered using one of the import* commands, using
a dummy address generated by another (trusted) wallet.

Notable changes

Performance Improvements

Version 0.15 contains a number of significant performance improvements, which make
Initial Block Download, startup, transaction and block validation much faster:

	The chainstate database (which is used for tracking UTXOs) has been changed
from a per-transaction model to a per-output model (See PR 10195 [https://github.com/bitcoin/bitcoin/pull/10195]). Advantages of this model
are that it:

	avoids the CPU overhead of deserializing and serializing the unused outputs;

	has more predictable memory usage;

	uses simpler code;

	is adaptable to various future cache flushing strategies.

As a result, validating the blockchain during Initial Block Download (IBD) and reindex
is ~30-40% faster, uses 10-20% less memory, and flushes to disk far less frequently.
The only downside is that the on-disk database is 15% larger. During the conversion from the previous format
a few extra gigabytes may be used.

	Earlier versions experienced a spike in memory usage while flushing UTXO updates to disk.
As a result, only half of the available memory was actually used as cache, and the other half was
reserved to accommodate flushing. This is no longer the case (See PR 10148 [https://github.com/bitcoin/bitcoin/pull/10148]), and the entirety of
the available cache (see -dbcache) is now actually used as cache. This reduces the flushing
frequency by a factor 2 or more.

	In previous versions, signature validation for transactions has been cached when the
transaction is accepted to the mempool. Version 0.15 extends this to cache the entire script
validity (See PR 10192 [https://github.com/bitcoin/bitcoin/pull/10192]). This means that if a transaction in a block has already been accepted to the
mempool, the scriptSig does not need to be re-evaluated. Empirical tests show that
this results in new block validation being 40-50% faster.

	LevelDB has been upgraded to version 1.20 (See PR 10544 [https://github.com/bitcoin/bitcoin/pull/10544]). This version contains hardware acceleration for CRC
on architectures supporting SSE 4.2. As a result, synchronization and block validation are now faster.

	SHA256 hashing has been optimized for architectures supporting SSE 4 (See PR 10821 [https://github.com/bitcoin/bitcoin/pull/10821]). SHA256 is around
50% faster on supported hardware, which results in around 5% faster IBD and block
validation. In version 0.15, SHA256 hardware optimization is disabled in release builds by
default, but can be enabled by using --enable-experimental-asm when building.

	Refill of the keypool no longer flushes the wallet between each key which resulted in a ~20x speedup in creating a new wallet. Part of this speedup was used to increase the default keypool to 1000 keys to make recovery more robust. (See PR 10831 [https://github.com/bitcoin/bitcoin/pull/10831]).

Fee Estimation Improvements

Fee estimation has been significantly improved in version 0.15, with more accurate fee estimates used by the wallet and a wider range of options for advanced users of the estimatesmartfee and estimaterawfee RPCs (See PR 10199 [https://github.com/bitcoin/bitcoin/pull/10199]).

Changes to internal logic and wallet behavior

	Internally, estimates are now tracked on 3 different time horizons. This allows for longer targets and means estimates adjust more quickly to changes in conditions.

	Estimates can now be conservative or economical. Conservative estimates use longer time horizons to produce an estimate which is less susceptible to rapid changes in fee conditions. Economical estimates use shorter time horizons and will be more affected by short-term changes in fee conditions. Economical estimates may be considerably lower during periods of low transaction activity (for example over weekends), but may result in transactions being unconfirmed if prevailing fees increase rapidly.

	By default, the wallet will use conservative fee estimates to increase the reliability of transactions being confirmed within the desired target. For transactions that are marked as replaceable, the wallet will use an economical estimate by default, since the fee can be ‘bumped’ if the fee conditions change rapidly (See PR 10589 [https://github.com/bitcoin/bitcoin/pull/10589]).

	Estimates can now be made for confirmation targets up to 1008 blocks (one week).

	More data on historical fee rates is stored, leading to more precise fee estimates.

	Transactions which leave the mempool due to eviction or other non-confirmed reasons are now taken into account by the fee estimation logic, leading to more accurate fee estimates.

	The fee estimation logic will make sure enough data has been gathered to return a meaningful estimate. If there is insufficient data, a fallback default fee is used.

Changes to fee estimate RPCs

	The estimatefee RPC is now deprecated in favor of using only estimatesmartfee (which is the implementation used by the GUI)

	The estimatesmartfee RPC interface has been changed (See PR 10707 [https://github.com/bitcoin/bitcoin/pull/10707]):
	The nblocks argument has been renamed to conf_target (to be consistent with other RPC methods).

	An estimate_mode argument has been added. This argument takes one of the following strings: CONSERVATIVE, ECONOMICAL or UNSET (which defaults to CONSERVATIVE).

	The RPC return object now contains an errors member, which returns errors encountered during processing.

	If Bitcoin Core has not been running for long enough and has not seen enough blocks or transactions to produce an accurate fee estimation, an error will be returned (previously a value of -1 was used to indicate an error, which could be confused for a feerate).

	A new estimaterawfee RPC is added to provide raw fee data. External clients can query and use this data in their own fee estimation logic.

Multi-wallet support

Bitcoin Core now supports loading multiple, separate wallets (See PR 8694 [https://github.com/bitcoin/bitcoin/pull/8694], PR 10849 [https://github.com/bitcoin/bitcoin/pull/10849]). The wallets are completely separated, with individual balances, keys and received transactions.

Multi-wallet is enabled by using more than one -wallet argument when starting Bitcoin, either on the command line or in the Bitcoin config file.

In Bitcoin-Qt, only the first wallet will be displayed and accessible for creating and signing transactions. GUI selectable multiple wallets will be supported in a future version. However, even in 0.15 other loaded wallets will remain synchronized to the node’s current tip in the background. This can be useful if running a pruned node, since loading a wallet where the most recent sync is beyond the pruned height results in having to download and revalidate the whole blockchain. Continuing to synchronize all wallets in the background avoids this problem.

Bitcoin Core 0.15.0 contains the following changes to the RPC interface and bitcoin-cli for multi-wallet:

	When running Bitcoin Core with a single wallet, there are no changes to the RPC interface or bitcoin-cli. All RPC calls and bitcoin-cli commands continue to work as before.

	When running Bitcoin Core with multi-wallet, all node-level RPC methods continue to work as before. HTTP RPC requests should be send to the normal <RPC IP address>:<RPC port>/ endpoint, and bitcoin-cli commands should be run as before. A node-level RPC method is any method which does not require access to the wallet.

	When running Bitcoin Core with multi-wallet, wallet-level RPC methods must specify the wallet for which they’re intended in every request. HTTP RPC requests should be send to the <RPC IP address>:<RPC port>/wallet/<wallet name>/ endpoint, for example 127.0.0.1:8332/wallet/wallet1.dat/. bitcoin-cli commands should be run with a -rpcwallet option, for example bitcoin-cli -rpcwallet=wallet1.dat getbalance.

	A new node-level listwallets RPC method is added to display which wallets are currently loaded. The names returned by this method are the same as those used in the HTTP endpoint and for the rpcwallet argument.

Note that while multi-wallet is now fully supported, the RPC multi-wallet interface should be considered unstable for version 0.15.0, and there may backwards-incompatible changes in future versions.

Replace-by-fee control in the GUI

Bitcoin Core has supported creating opt-in replace-by-fee (RBF) transactions
since version 0.12.0, and since version 0.14.0 has included a bumpfee RPC method to
replace unconfirmed opt-in RBF transactions with a new transaction that pays
a higher fee.

In version 0.15, creating an opt-in RBF transaction and replacing the unconfirmed
transaction with a higher-fee transaction are both supported in the GUI (See PR 9592 [https://github.com/bitcoin/bitcoin/pull/9592]).

Removal of Coin Age Priority

In previous versions of Bitcoin Core, a portion of each block could be reserved for transactions based on the age and value of UTXOs they spent. This concept (Coin Age Priority) is a policy choice by miners, and there are no consensus rules around the inclusion of Coin Age Priority transactions in blocks. In practice, only a few miners continue to use Coin Age Priority for transaction selection in blocks. Bitcoin Core 0.15 removes all remaining support for Coin Age Priority (See PR 9602 [https://github.com/bitcoin/bitcoin/pull/9602]). This has the following implications:

	The concept of free transactions has been removed. High Coin Age Priority transactions would previously be allowed to be relayed even if they didn’t attach a miner fee. This is no longer possible since there is no concept of Coin Age Priority. The -limitfreerelay and -relaypriority options which controlled relay of free transactions have therefore been removed.

	The -sendfreetransactions option has been removed, since almost all miners do not include transactions which do not attach a transaction fee.

	The -blockprioritysize option has been removed.

	The estimatepriority and estimatesmartpriority RPCs have been removed.

	The getmempoolancestors, getmempooldescendants, getmempoolentry and getrawmempool RPCs no longer return startingpriority and currentpriority.

	The prioritisetransaction RPC no longer takes a priority_delta argument, which is replaced by a dummy argument for backwards compatibility with clients using positional arguments. The RPC is still used to change the apparent fee-rate of the transaction by using the fee_delta argument.

	-minrelaytxfee can now be set to 0. If minrelaytxfee is set, then fees smaller than minrelaytxfee (per kB) are rejected from relaying, mining and transaction creation. This defaults to 1000 satoshi/kB.

	The -printpriority option has been updated to only output the fee rate and hash of transactions included in a block by the mining code.

Mempool Persistence Across Restarts

Version 0.14 introduced mempool persistence across restarts (the mempool is saved to a mempool.dat file in the data directory prior to shutdown and restores the mempool when the node is restarted). Version 0.15 allows this feature to be switched on or off using the -persistmempool command-line option (See PR 9966 [https://github.com/bitcoin/bitcoin/pull/9966]). By default, the option is set to true, and the mempool is saved on shutdown and reloaded on startup. If set to false, the mempool.dat file will not be loaded on startup or saved on shutdown.

New RPC methods

Version 0.15 introduces several new RPC methods:

	abortrescan stops current wallet rescan, e.g. when triggered by an importprivkey call (See PR 10208 [https://github.com/bitcoin/bitcoin/pull/10208]).

	combinerawtransaction accepts a JSON array of raw transactions and combines them into a single raw transaction (See PR 10571 [https://github.com/bitcoin/bitcoin/pull/10571]).

	estimaterawfee returns raw fee data so that customized logic can be implemented to analyze the data and calculate estimates. See Fee Estimation Improvements for full details on changes to the fee estimation logic and interface.

	getchaintxstats returns statistics about the total number and rate of transactions
in the chain (See PR 9733 [https://github.com/bitcoin/bitcoin/pull/9733]).

	listwallets lists wallets which are currently loaded. See the Multi-wallet section
of these release notes for full details (See Multi-wallet support).

	uptime returns the total runtime of the bitcoind server since its last start (See PR 10400 [https://github.com/bitcoin/bitcoin/pull/10400]).

Low-level RPC changes

	When using Bitcoin Core in multi-wallet mode, RPC requests for wallet methods must specify
the wallet that they’re intended for. See Multi-wallet support for full details.

	The new database model no longer stores information about transaction
versions of unspent outputs (See Performance improvements). This means that:
	The gettxout RPC no longer has a version field in the response.

	The gettxoutsetinfo RPC reports hash_serialized_2 instead of hash_serialized,
which does not commit to the transaction versions of unspent outputs, but does
commit to the height and coinbase information.

	The getutxos REST path no longer reports the txvers field in JSON format,
and always reports 0 for transaction versions in the binary format

	The estimatefee RPC is deprecated. Clients should switch to using the estimatesmartfee RPC, which returns better fee estimates. See Fee Estimation Improvements for full details on changes to the fee estimation logic and interface.

	The gettxoutsetinfo response now contains disk_size and bogosize instead of
bytes_serialized. The first is a more accurate estimate of actual disk usage, but
is not deterministic. The second is unrelated to disk usage, but is a
database-independent metric of UTXO set size: it counts every UTXO entry as 50 + the
length of its scriptPubKey (See PR 10426 [https://github.com/bitcoin/bitcoin/pull/10426]).

	signrawtransaction can no longer be used to combine multiple transactions into a single transaction. Instead, use the new combinerawtransaction RPC (See PR 10571 [https://github.com/bitcoin/bitcoin/pull/10571]).

	fundrawtransaction no longer accepts a reserveChangeKey option. This option used to allow RPC users to fund a raw transaction using an key from the keypool for the change address without removing it from the available keys in the keypool. The key could then be re-used for a getnewaddress call, which could potentially result in confusing or dangerous behaviour (See PR 10784 [https://github.com/bitcoin/bitcoin/pull/10784]).

	estimatepriority and estimatesmartpriority have been removed. See Removal of Coin Age Priority.

	The listunspent RPC now takes a query_options argument (see PR 8952 [https://github.com/bitcoin/bitcoin/pull/8952]), which is a JSON object
containing one or more of the following members:
	minimumAmount - a number specifying the minimum value of each UTXO

	maximumAmount - a number specifying the maximum value of each UTXO

	maximumCount - a number specifying the minimum number of UTXOs

	minimumSumAmount - a number specifying the minimum sum value of all UTXOs

	The getmempoolancestors, getmempooldescendants, getmempoolentry and getrawmempool RPCs no longer return startingpriority and currentpriority. See Removal of Coin Age Priority.

	The dumpwallet RPC now returns the full absolute path to the dumped wallet. It
used to return no value, even if successful (See PR 9740 [https://github.com/bitcoin/bitcoin/pull/9740]).

	In the getpeerinfo RPC, the return object for each peer now returns an addrbind member, which contains the ip address and port of the connection to the peer. This is in addition to the addrlocal member which contains the ip address and port of the local node as reported by the peer (See PR 10478 [https://github.com/bitcoin/bitcoin/pull/10478]).

	The disconnectnode RPC can now disconnect a node specified by node ID (as well as by IP address/port). To disconnect a node based on node ID, call the RPC with the new nodeid argument (See PR 10143 [https://github.com/bitcoin/bitcoin/pull/10143]).

	The second argument in prioritisetransaction has been renamed from priority_delta to dummy since Bitcoin Core no longer has a concept of coin age priority. The dummy argument has no functional effect, but is retained for positional argument compatibility. See Removal of Coin Age Priority.

	The resendwallettransactions RPC throws an error if the -walletbroadcast option is set to false (See PR 10995 [https://github.com/bitcoin/bitcoin/pull/10995]).

	The second argument in the submitblock RPC argument has been renamed from parameters to dummy. This argument never had any effect, and the renaming is simply to communicate this fact to the user (See PR 10191 [https://github.com/bitcoin/bitcoin/pull/10191])
(Clients should, however, use positional arguments for submitblock in order to be compatible with BIP 22.)

	The verbose argument of getblock has been renamed to verbosity and now takes an integer from 0 to 2. Verbose level 0 is equivalent to verbose=false. Verbose level 1 is equivalent to verbose=true. Verbose level 2 will give the full transaction details of each transaction in the output as given by getrawtransaction. The old behavior of using the verbose named argument and a boolean value is still maintained for compatibility.

	Error codes have been updated to be more accurate for the following error cases (See PR 9853 [https://github.com/bitcoin/bitcoin/pull/9853]):
	getblock now returns RPC_MISC_ERROR if the block can’t be found on disk (for
example if the block has been pruned). Previously returned RPC_INTERNAL_ERROR.

	pruneblockchain now returns RPC_MISC_ERROR if the blocks cannot be pruned
because the node is not in pruned mode. Previously returned RPC_METHOD_NOT_FOUND.

	pruneblockchain now returns RPC_INVALID_PARAMETER if the blocks cannot be pruned
because the supplied timestamp is too late. Previously returned RPC_INTERNAL_ERROR.

	pruneblockchain now returns RPC_MISC_ERROR if the blocks cannot be pruned
because the blockchain is too short. Previously returned RPC_INTERNAL_ERROR.

	setban now returns RPC_CLIENT_INVALID_IP_OR_SUBNET if the supplied IP address
or subnet is invalid. Previously returned RPC_CLIENT_NODE_ALREADY_ADDED.

	setban now returns RPC_CLIENT_INVALID_IP_OR_SUBNET if the user tries to unban
a node that has not previously been banned. Previously returned RPC_MISC_ERROR.

	removeprunedfunds now returns RPC_WALLET_ERROR if bitcoind is unable to remove
the transaction. Previously returned RPC_INTERNAL_ERROR.

	removeprunedfunds now returns RPC_INVALID_PARAMETER if the transaction does not
exist in the wallet. Previously returned RPC_INTERNAL_ERROR.

	fundrawtransaction now returns RPC_INVALID_ADDRESS_OR_KEY if an invalid change
address is provided. Previously returned RPC_INVALID_PARAMETER.

	fundrawtransaction now returns RPC_WALLET_ERROR if bitcoind is unable to create
the transaction. The error message provides further details. Previously returned
RPC_INTERNAL_ERROR.

	bumpfee now returns RPC_INVALID_PARAMETER if the provided transaction has
descendants in the wallet. Previously returned RPC_MISC_ERROR.

	bumpfee now returns RPC_INVALID_PARAMETER if the provided transaction has
descendants in the mempool. Previously returned RPC_MISC_ERROR.

	bumpfee now returns RPC_WALLET_ERROR if the provided transaction has
has been mined or conflicts with a mined transaction. Previously returned
RPC_INVALID_ADDRESS_OR_KEY.

	bumpfee now returns RPC_WALLET_ERROR if the provided transaction is not
BIP 125 replaceable. Previously returned RPC_INVALID_ADDRESS_OR_KEY.

	bumpfee now returns RPC_WALLET_ERROR if the provided transaction has already
been bumped by a different transaction. Previously returned RPC_INVALID_REQUEST.

	bumpfee now returns RPC_WALLET_ERROR if the provided transaction contains
inputs which don’t belong to this wallet. Previously returned RPC_INVALID_ADDRESS_OR_KEY.

	bumpfee now returns RPC_WALLET_ERROR if the provided transaction has multiple change
outputs. Previously returned RPC_MISC_ERROR.

	bumpfee now returns RPC_WALLET_ERROR if the provided transaction has no change
output. Previously returned RPC_MISC_ERROR.

	bumpfee now returns RPC_WALLET_ERROR if the fee is too high. Previously returned
RPC_MISC_ERROR.

	bumpfee now returns RPC_WALLET_ERROR if the fee is too low. Previously returned
RPC_MISC_ERROR.

	bumpfee now returns RPC_WALLET_ERROR if the change output is too small to bump the
fee. Previously returned RPC_MISC_ERROR.

0.15.0 Change log

RPC and other APIs

	#9485 61a640e ZMQ example using python3 and asyncio (mcelrath)

	#9894 0496e15 remove ‘label’ filter for rpc command help (instagibbs)

	#9853 02bd6e9 Fix error codes from various RPCs (jnewbery)

	#9842 598ef9c Fix RPC failure testing (continuation of #9707) (jnewbery)

	#10038 d34995a Add mallocinfo mode to getmemoryinfo RPC (laanwj)

	#9500 3568b30 [Qt][RPC] Autocomplete commands for ‘help’ command in debug console (achow101)

	#10056 e6156a0 [zmq] Call va_end() on va_start()ed args (kallewoof)

	#10086 7438cea Trivial: move rpcserialversion into RPC option group (jlopp)

	#10150 350b224 [rpc] Add logging rpc (jnewbery)

	#10208 393160c [wallet] Rescan abortability (kallewoof)

	#10143 a987def [net] Allow disconnectnode RPC to be called with node id (jnewbery)

	#10281 0e8499c doc: Add RPC interface guidelines (laanwj)

	#9733 d4732f3 Add getchaintxstats RPC (sipa)

	#10310 f4b15e2 [doc] Add hint about getmempoolentry to getrawmempool help (kallewoof)

	#8704 96c850c [RPC] Transaction details in getblock (achow101)

	#8952 9390845 Add query options to listunspent RPC call (pedrobranco)

	#10413 08ac35a Fix docs (there’s no rpc command setpaytxfee) (RHavar)

	#8384 e317c0d Add witness data output to TxInError messages (instagibbs)

	#9571 4677151 RPC: getblockchaininfo returns BIP signaling statistics (pinheadmz)

	#10450 ef2d062 Fix bumpfee rpc “errors” return value (ryanofsky)

	#10475 39039b1 [RPC] getmempoolinfo mempoolminfee is a BTC/KB feerate (instagibbs)

	#10478 296928e rpc: Add listen address to incoming connections in getpeerinfo (laanwj)

	#10403 08d0390 Fix importmulti failure to return rescan errors (ryanofsky)

	#9740 9fec4da Add friendly output to dumpwallet (aideca)

	#10426 16f6c98 Replace bytes_serialized with bogosize (sipa)

	#10252 980deaf RPC/Mining: Restore API compatibility for prioritisetransaction (luke-jr)

	#9672 46311e7 Opt-into-RBF for RPC & bitcoin-tx (luke-jr)

	#10481 9c248e3 Decodehextx scripts sanity check (achow101)

	#10488 fa1f106 Note that the prioritizetransaction dummy value is deprecated, and has no meaning (TheBlueMatt)

	#9738 c94b89e gettxoutproof() should return consistent result (jnewbery)

	#10191 00350bd [trivial] Rename unused RPC arguments ‘dummy’ (jnewbery)

	#10627 b62b4c8 fixed listunspent rpc convert parameter (tnakagawa)

	#10412 bef02fb Improve wallet rescan API (ryanofsky)

	#10400 1680ee0 [RPC] Add an uptime command that displays the amount of time (in seconds) bitcoind has been running (rvelhote)

	#10683 d81bec7 rpc: Move the generate RPC call to rpcwallet (laanwj)

	#10710 30bc0f6 REST/RPC example update (Mirobit)

	#10747 9edda0c [rpc] fix verbose argument for getblock in bitcoin-cli (jnewbery)

	#10589 104f5f2 More economical fee estimates for RBF and RPC options to control (morcos)

	#10543 b27b004 Change API to estimaterawfee (morcos)

	#10807 afd2fca getbalance example covers at least 6 confirms (instagibbs)

	#10707 75b5643 Better API for estimatesmartfee RPC (morcos)

	#10784 9e8d6a3 Do not allow users to get keys from keypool without reserving them (TheBlueMatt)

	#10857 d445a2c [RPC] Add a deprecation warning to getinfo’s output (achow101)

	#10571 adf170d [RPC]Move transaction combining from signrawtransaction to new RPC (achow101)

	#10783 041dad9 [RPC] Various rpc argument fixes (instagibbs)

	#9622 6ef3c7e [rpc] listsinceblock should include lost transactions when parameter is a reorg’d block (kallewoof)

	#10799 8537187 Prevent user from specifying conflicting parameters to fundrawtx (TheBlueMatt)

	#10931 0b11a07 Fix misleading “Method not found” multiwallet errors (ryanofsky)

	#10788 f66c596 [RPC] Fix addwitnessaddress by replacing ismine with producesignature (achow101)

	#10999 627c3c0 Fix amounts formatting in decoderawtransaction (laanwj)

	#11002 4268426 [wallet] return correct error code from resendwallettransaction (jnewbery)

	#11029 96a63a3 [RPC] trivial: gettxout no longer shows version of tx (FelixWeis)

	#11083 6c2b008 Fix combinerawtransaction RPC help result section (jonasnick)

	#11027 07164bb [RPC] Only return hex field once in getrawtransaction (achow101)

	#10698 5af6572 Be consistent in calling transactions “replaceable” for Opt-In RBF (TheBlueMatt)

Block and transaction handling

	#9801 a8c5751 Removed redundant parameter from mempool.PrioritiseTransaction (gubatron)

	#9819 1efc99c Remove harmless read of unusued priority estimates (morcos)

	#9822 b7547fa Remove block file location upgrade code (benma)

	#9602 30ff3a2 Remove coin age priority and free transactions - implementation (morcos)

	#9548 47510ad Remove min reasonable fee (morcos)

	#10249 c73af54 Switch CCoinsMap from boost to std unordered_map (sipa)

	#9966 2a183de Control mempool persistence using a command line parameter (jnewbery)

	#10199 318ea50 Better fee estimates (morcos)

	#10196 bee3529 Bugfix: PrioritiseTransaction updates the mempool tx counter (sdaftuar)

	#10195 1088b02 Switch chainstate db and cache to per-txout model (sipa)

	#10284 c2ab38b Always log debug information for fee calculation in CreateTransaction (morcos)

	#10503 efbcf2b Use REJECT_DUPLICATE for already known and conflicted txn (sipa)

	#10537 b3eb0d6 Few Minor per-utxo assert-semantics re-adds and tweak (TheBlueMatt)

	#10626 8c841a3 doc: Remove outdated minrelaytxfee comment (MarcoFalke)

	#10559 234ffc6 Change semantics of HaveCoinInCache to match HaveCoin (morcos)

	#10581 7878353 Simplify return values of GetCoin/HaveCoin(InCache) (sipa)

	#10684 a381f6a Remove no longer used mempool.exists(outpoint) (morcos)

	#10148 d4e551a Use non-atomic flushing with block replay (sipa)

	#10685 30c2130 Clarify CCoinsViewMemPool documentation (TheBlueMatt)

	#10558 90a002e Address nits from per-utxo change (morcos)

	#10706 6859ad2 Improve wallet fee logic and fix GUI bugs (morcos)

	#10526 754aa02 Force on-the-fly compaction during pertxout upgrade (sipa)

	#10985 d896d5c Add undocumented -forcecompactdb to force LevelDB compactions (sipa)

	#10292 e4bbd3d Improved efficiency in COutPoint constructors (mm-s)

	#10290 8d6d43e Add -stopatheight for benchmarking (sipa)

P2P protocol and network code

	#9726 7639d38 netbase: Do not print an error on connection timeouts through proxy (laanwj)

	#9805 5b583ef Add seed.btc.petertodd.org to mainnet DNS seeds (petertodd)

	#9861 22f609f Trivial: Debug log ambiguity fix for peer addrs (keystrike)

	#9774 90cb2a2 Enable host lookups for -proxy and -onion parameters (jmcorgan)

	#9558 7b585cf Clarify assumptions made about when BlockCheck is called (TheBlueMatt)

	#10135 e19586a [p2p] Send the correct error code in reject messages (jnewbery)

	#9665 eab00d9 Use cached [compact] blocks to respond to getdata messages (TheBlueMatt)

	#10215 a077a90 Check interruptNet during dnsseed lookups (TheBlueMatt)

	#10234 faf2dea [net] listbanned RPC and QT should show correct banned subnets (jnewbery)

	#10134 314ebdf [qa] Fixes segwit block relay test after inv-direct-fetch was disabled (sdaftuar)

	#10351 3f57c55 removed unused code in INV message (Greg-Griffith)

	#10061 ae78609 [net] Added SetSocketNoDelay() utility function (tjps)

	#10408 28c6e8d Net: Improvements to Tor control port parser (str4d)

	#10460 5c63d66 Broadcast address every day, not 9 hours (sipa)

	#10471 400fdd0 Denote functions CNode::GetRecvVersion() and CNode::GetRefCount() as const (pavlosantoniou)

	#10345 67700b3 [P2P] Timeout for headers sync (sdaftuar)

	#10564 8d9f45e Return early in IsBanned (gmaxwell)

	#10587 de8db47 Net: Fix resource leak in ReadBinaryFile(...) (practicalswift)

	#9549 b33ca14 [net] Avoid possibility of NULL pointer dereference in MarkBlockAsInFlight(...) (practicalswift)

	#10446 2772dc9 net: avoid extra dns query per seed (theuni)

	#10824 9dd6a2b Avoid unnecessary work in SetNetworkActive (promag)

	#10948 df3a6f4 p2p: Hardcoded seeds update pre-0.15 branch (laanwj)

	#10977 02f4c4a [net] Fix use of uninitialized value in getnetworkinfo(const JSONRPCRequest&) (practicalswift)

	#10982 c8b62c7 Disconnect network service bits 6 and 8 until Aug 1, 2018 (TheBlueMatt)

	#11012 0e5cff6 Make sure to clean up mapBlockSource if we’ve already seen the block (theuni)

Validation

	#9725 67023e9 CValidationInterface Cleanups (TheBlueMatt)

	#10178 2584925 Remove CValidationInterface::UpdatedTransaction (TheBlueMatt)

	#10201 a6548a4 pass Consensus::Params& to functions in validation.cpp and make them static (mariodian)

	#10297 431a548 Simplify DisconnectBlock arguments/return value (sipa)

	#10464 f94b7d5 Introduce static DoWarning (simplify UpdateTip) (jtimon)

	#10569 2e7d8f8 Fix stopatheight (achow101)

	#10192 2935b46 Cache full script execution results in addition to signatures (TheBlueMatt)

	#10179 21ed30a Give CValidationInterface Support for calling notifications on the CScheduler Thread (TheBlueMatt)

	#10557 66270a4 Make check to distinguish between orphan txs and old txs more efficient (morcos)

	#10775 7c2400c nCheckDepth chain height fix (romanornr)

	#10821 16240f4 Add SSE4 optimized SHA256 (sipa)

	#10854 04d395e Avoid using sizes on non-fixed-width types to derive protocol constants (gmaxwell)

	#10945 2a50b11 Update defaultAssumeValid according to release-process.md (gmaxwell)

	#10986 2361208 Update chain transaction statistics (sipa)

	#11028 6bdf4b3 Avoid masking of difficulty adjustment errors by checkpoints (sipa)

	#9533 cb598cf Allow non-power-of-2 signature cache sizes (sipa)

	#9208 acd9957 Improve DisconnectTip performance (sdaftuar)

	#10618 f90603a Remove confusing MAX_BLOCK_BASE_SIZE (gmaxwell)

	#10758 bd92424 Fix some chainstate-init-order bugs (TheBlueMatt)

	#10550 b7296bc Don’t return stale data from CCoinsViewCache::Cursor() (ryanofsky)

	#10998 2507fd5 Fix upgrade cancel warnings (TheBlueMatt)

	#9868 cbdb473 Abstract out the command line options for block assembly (sipa)

Build system

	#9727 5f0556d Remove fallbacks for boost_filesystem < v3 (laanwj)

	#9788 50a2265 gitian: bump descriptors for master (theuni)

	#9794 7ca2f54 Minor update to qrencode package builder (mitchellcash)

	#9514 2cc0df1 release: Windows signing script (theuni)

	#9921 8b789d8 build: Probe MSG_DONTWAIT in the same way as MSG_NOSIGNAL (laanwj)

	#10011 32d1b34 build: Fix typo s/HAVE_DONTWAIT/HAVE_MSG_DONTWAIT (laanwj)

	#9946 90dd9e6 Fix build errors if spaces in path or parent directory (pinheadmz)

	#10136 81da4c7 build: Disable Wshadow warning (laanwj)

	#10166 64962ae Ignore Doxyfile generated from Doxyfile.in template (paveljanik)

	#10239 0416ea9 Make Boost use std::atomic internally (sipa)

	#10228 27faa6c build: regenerate bitcoin-config.h as necessary (theuni)

	#10273 8979f45 [scripts] Minor improvements to macdeployqtplus script (chrisgavin)

	#10325 a26280b 0.15.0 Depends Updates (fanquake)

	#10328 79aeff6 Update contrib/debian to latest Ubuntu PPA upload (TheBlueMatt)

	#7522 d25449f Bugfix: Only use git for build info if the repository is actually the right one (luke-jr)

	#10489 e654d61 build: silence gcc7’s implicit fallthrough warning (theuni)

	#10549 ad1a13e Avoid printing generic and duplicated “checking for QT” during ./configure (drizzt)

	#10628 8465b68 [depends] expat 2.2.1 (fanquake)

	#10806 db825d2 build: verify that the assembler can handle crc32 functions (theuni)

	#10766 b4d03be Building Environment: Set ARFLAGS to cr (ReneNyffenegger)

	#10803 91edda8 Explicitly search for bdb5.3 (pstratem)

	#10855 81560b0 random: only use getentropy on openbsd (theuni)

	#10508 1caafa6 Run Qt wallet tests on travis (ryanofsky)

	#10851 e222618 depends: fix fontconfig with newer glibc (theuni)

	#10971 88b1e4b build: fix missing sse42 in depends builds (theuni)

	#11097 129b03f gitian: quick hack to fix version string in releases (theuni)

	#10039 919aaf6 Fix compile errors with Qt 5.3.2 and Boost 1.55.0 (ryanofsky)

	#10168 7032021 Fix build warning from #error text (jnewbery)

	#10301 318392c Check if sys/random.h is required for getentropy (jameshilliard)

GUI

	#9724 1a9fd5c Qt/Intro: Add explanation of IBD process (luke-jr)

	#9834 b00ba62 qt: clean up initialize/shutdown signals (benma)

	#9481 ce01e62 [Qt] Show more significant warning if we fall back to the default fee (jonasschnelli)

	#9974 b9f930b Add basic Qt wallet test (ryanofsky)

	#9690 a387d3a Change ‘Clear’ button string to ‘Reset’ (da2x)

	#9592 9c7b7cf [Qt] Add checkbox in the GUI to opt-in to RBF when creating a transaction (ryanofsky)

	#10098 2b477e6 Make qt wallet test compatible with qt4 (ryanofsky)

	#9890 1fa4ae6 Add a button to open the config file in a text editor (ericshawlinux)

	#10156 51833a1 Fix for issues with startup and multiple monitors on windows (AllanDoensen)

	#10177 de01da7 Changed “Send” button default status from true to false (KibbledJiveElkZoo)

	#10221 e96486c Stop treating coinbase outputs differently in GUI: show them at 1conf (TheBlueMatt)

	#10231 987a6c0 [Qt] Reduce a significant cs_main lock freeze (jonasschnelli)

	#10242 f6f3b58 [qt] Don’t call method on null WalletModel object (ryanofsky)

	#10093 a3e756b [Qt] Don’t add arguments of sensitive command to console window (jonasschnelli)

	#10362 95546c8 [GUI] Add OSX keystroke to RPCConsole info (spencerlievens)

	#9697 962cd3f [Qt] simple fee bumper with user verification (jonasschnelli)

	#10390 e477516 [wallet] remove minimum total fee option (instagibbs)

	#10420 4314544 Add Qt tests for wallet spends & bumpfee (ryanofsky)

	#10454 c1c9a95 Fix broken q4 test build (ryanofsky)

	#10449 64beb13 Overhaul Qt fee bumper (jonasschnelli)

	#10582 7c72fb9 Pass in smart fee slider value to coin control dialog (morcos)

	#10673 4c72cc3 [qt] Avoid potential null pointer dereference in TransactionView::exportClicked() (practicalswift)

	#10769 8fdd23a [Qt] replace fee slider with a Dropdown, extend conf. targets (jonasschnelli)

	#10870 412b466 [Qt] Use wallet 0 in rpc console if running with multiple wallets (jonasschnelli)

	#10988 a9dd111 qt: Increase BLOCK_CHAIN_SIZE constants (laanwj)

	#10644 e292140 Slightly overhaul NSI pixmaps (jonasschnelli)

	#10660 0c3542e Allow to cancel the txdb upgrade via splashscreen keypress ‘q’ (jonasschnelli)

Wallet

	#9359 f7ec7cf Add test for CWalletTx::GetImmatureCredit() returning stale values (ryanofsky)

	#9576 56ab672 [wallet] Remove redundant initialization (practicalswift)

	#9333 fa625b0 Document CWalletTx::mapValue entries and remove erase of nonexistent “version” entry (ryanofsky)

	#9906 72fb515 Disallow copy constructor CReserveKeys (instagibbs)

	#9369 3178b2c Factor out CWallet::nTimeSmart computation into a method (ryanofsky)

	#9830 afcd7c0 Add safe flag to listunspent result (NicolasDorier)

	#9993 c49355c Initialize nRelockTime (pstratem)

	#9818 3d857f3 Save watch only key timestamps when reimporting keys (ryanofsky)

	#9294 f34cdcb Use internal HD chain for change outputs (hd split) (jonasschnelli)

	#10164 e183ea2 Wallet: reduce excess logic InMempool() (kewde)

	#10186 c9ff4f8 Remove SYNC_TRANSACTION_NOT_IN_BLOCK magic number (jnewbery)

	#10226 64c45aa wallet: Use boost to more portably ensure -wallet specifies only a filename (luke-jr)

	#9827 c91ca0a Improve ScanForWalletTransactions return value (ryanofsky)

	#9951 fa1ac28 Wallet database handling abstractions/simplifications (laanwj)

	#10265 c29a0d4 [wallet] [moveonly] Check non-null pindex before potentially referencing (kallewoof)

	#10283 a550f6e Cleanup: reduce to one GetMinimumFee call signature (morcos)

	#10294 e2b99b1 [Wallet] unset change position when there is no change (instagibbs)

	#10115 d3dce0e Avoid reading the old hd master key during wallet encryption (TheBlueMatt)

	#10341 18c9deb rpc/wallet: Workaround older UniValue which returns a std::string temporary for get_str (luke-jr)

	#10308 94e5227 [wallet] Securely erase potentially sensitive keys/values (tjps)

	#10257 ea1fd43 [test] Add test for getmemoryinfo (jimmysong)

	#10295 ce8176d [qt] Move some WalletModel functions into CWallet (ryanofsky)

	#10506 7cc2c67 Fix bumpfee test after #10449 (ryanofsky)

	#10500 098b01d Avoid CWalletTx copies in GetAddressBalances and GetAddressGroupings (ryanofsky)

	#10455 0747d33 Simplify feebumper minimum fee code slightly (ryanofsky)

	#10522 2805d60 [wallet] Remove unused variables (practicalswift)

	#8694 177433a Basic multiwallet support (luke-jr)

	#10598 7a74f88 Supress struct/class mismatch warnings introduced in #10284 (paveljanik)

	#9343 209eef6 Don’t create change at dust limit (morcos)

	#10744 ed88e31 Use method name via func macro (darksh1ne)

	#10712 e8b9523 Add change output if necessary to reduce excess fee (morcos)

	#10816 1c011ff Properly forbid -salvagewallet and -zapwallettxes for multi wallet (morcos)

	#10235 5cfdda2 Track keypool entries as internal vs external in memory (TheBlueMatt)

	#10330 bf0a08b [wallet] fix zapwallettxes interaction with persistent mempool (jnewbery)

	#10831 0b01935 Batch flushing operations to the walletdb during top up and increase keypool size (gmaxwell)

	#10795 7b6e8bc No longer ever reuse keypool indexes (TheBlueMatt)

	#10849 bde4f93 Multiwallet: simplest endpoint support (jonasschnelli)

	#10817 9022aa3 Redefine Dust and add a discard_rate (morcos)

	#10883 bf3b742 Rename -usewallet to -rpcwallet (morcos)

	#10604 420238d [wallet] [tests] Add listwallets RPC, include wallet name in getwalletinfo and add multiwallet test (jnewbery)

	#10885 70888a3 Reject invalid wallets (promag)

	#10949 af56397 Clarify help message for -discardfee (morcos)

	#10942 2e857bb Eliminate fee overpaying edge case when subtracting fee from recipients (morcos)

	#10995 fa64636 Fix resendwallettransactions assert failure if -walletbroadcast=0 (TheBlueMatt)

	#11022 653a46d Basic keypool topup (jnewbery)

	#11081 9fe1f6b Add length check for CExtKey deserialization (jonasschnelli, guidovranken)

	#11044 4ef8374 [wallet] Keypool topup cleanups (jnewbery)

	#11145 e51bb71 Fix rounding bug in calculation of minimum change (morcos)

	#9605 779f2f9 Use CScheduler for wallet flushing, remove ThreadFlushWalletDB (TheBlueMatt)

	#10108 4e3efd4 ApproximateBestSubset should take inputs by reference, not value (RHavar)

Tests and QA

	#9744 8efd1c8 Remove unused module from rpc-tests (34ro)

	#9657 7ff4a53 Improve rpc-tests.py (jnewbery)

	#9766 7146d96 Add –exclude option to rpc-tests.py (jnewbery)

	#9577 d6064a8 Fix docstrings in qa tests (jnewbery)

	#9823 a13a417 qa: Set correct path for binaries in rpc tests (MarcoFalke)

	#9847 6206252 Extra test vector for BIP32 (sipa)

	#9350 88c2ae3 [Trivial] Adding label for amount inside of tx_valid/tx_invalid.json (Christewart)

	#9888 36afd4d travis: Verify commits only for one target (MarcoFalke)

	#9904 58861ad test: Fail if InitBlockIndex fails (laanwj)

	#9828 67c5cc1 Avoid -Wshadow warnings in wallet_tests (ryanofsky)

	#9832 48c3429 [qa] assert_start_raises_init_error (NicolasDorier)

	#9739 9d5fcbf Fix BIP68 activation test (jnewbery)

	#9547 d32581c bench: Assert that division by zero is unreachable (practicalswift)

	#9843 c78adbf Fix segwit getblocktemplate test (jnewbery)

	#9929 d5ce14e tests: Delete unused function _rpchost_to_args (laanwj)

	#9555 19be26a [test] Avoid reading a potentially uninitialized variable in tx_invalid-test (transaction_tests.cpp) (practicalswift)

	#9945 ac23a7c Improve logging in bctest.py if there is a formatting mismatch (jnewbery)

	#9768 8910b47 [qa] Add logging to test_framework.py (jnewbery)

	#9972 21833f9 Fix extended rpc tests broken by #9768 (jnewbery)

	#9977 857d1e1 QA: getblocktemplate_longpoll.py should always use >0 fee tx (sdaftuar)

	#9970 3cc13ea Improve readability of segwit.py, smartfees.py (sdaftuar)

	#9497 2c781fb CCheckQueue Unit Tests (JeremyRubin)

	#10024 9225de2 [trivial] Use log.info() instead of print() in remaining functional test cases (jnewbery)

	#9956 3192e52 Reorganise qa directory (jnewbery)

	#10017 02d64bd combine_logs.py - aggregates log files from multiple bitcoinds during functional tests (jnewbery)

	#10047 dfef6b6 [tests] Remove unused variables and imports (practicalswift)

	#9701 a230b05 Make bumpfee tests less fragile (ryanofsky)

	#10053 ca20923 [test] Allow functional test cases to be skipped (jnewbery)

	#10052 a0b1e57 [test] Run extended tests once daily in Travis (jnewbery)

	#10069 1118493 [QA] Fix typo in fundrawtransaction test (NicolasDorier)

	#10083 c044f03 [QA] Renaming rawTx into rawtx (NicolasDorier)

	#10073 b1a4f27 Actually run assumevalid.py (jnewbery)

	#9780 c412fd8 Suppress noisy output from qa tests in Travis (jnewbery)

	#10096 79af9fb Check that all test scripts in test/functional are being run (jnewbery)

	#10076 5b029aa [qa] combine_logs: Use ordered list for logfiles (MarcoFalke)

	#10107 f2734c2 Remove unused variable. Remove accidental trailing semicolons in Python code (practicalswift)

	#10109 8ac8041 Remove SingleNodeConnCB (jnewbery)

	#10114 edc62c9 [tests] sync_with_ping should assert that ping hasn’t timed out (jnewbery)

	#10128 427d2fd Speed Up CuckooCache tests (JeremyRubin)

	#10072 12af74b Remove sources of unreliablility in extended functional tests (jnewbery)

	#10077 ebfd653 [qa] Add setnetworkactive smoke test (MarcoFalke)

	#10152 080d7c7 [trivial] remove unused line in Travis config (jnewbery)

	#10159 df1ca9e [tests] color test results and sort alphabetically (jnewbery)

	#10124 88799ea [test] Suppress test logging spam (jnewbery)

	#10142 ed09dd3 Run bitcoin_test-qt under minimal QPA platform (ryanofsky)

	#9949 a27dbc5 [bench] Avoid function call arguments which are pointers to uninitialized values (practicalswift)

	#10187 b44adf9 tests: Fix test_runner return value in case of skipped test (laanwj)

	#10197 d86bb07 [tests] Functional test warnings (jnewbery)

	#10219 9111df9 Tests: Order Python Tests Differently (jimmysong)

	#10229 f3db4c6 Tests: Add test for getdifficulty (jimmysong)

	#10224 2723bcd [test] Add test for getaddednodeinfo (jimmysong)

	#10023 c530c15 [tests] remove maxblocksinflight.py (functionality covered by other test) (jnewbery)

	#10097 1b25b6d Move zmq test skipping logic into individual test case (jnewbery)

	#10272 54e2d87 [Tests] Prevent warning: variable ‘x’ is uninitialized (paveljanik)

	#10225 e0a7e19 [test] Add aborttrescan tests (kallewoof)

	#10278 8254a8a [test] Add Unit Test for GetListenPort (jimmysong)

	#10280 47535d7 [test] Unit test amount.h/amount.cpp (jimmysong)

	#10256 80c3a73 [test] Add test for gettxout to wallet.py (jimmysong)

	#10264 492d22f [test] Add tests for getconnectioncount, getnettotals and ping (jimmysong)

	#10169 8f3e384 [tests] Remove func test code duplication (jnewbery)

	#10198 dc8fc0c [tests] Remove is_network_split from functional test framework (jnewbery)

	#10255 3c5e6c9 [test] Add test for listaddressgroupings (jimmysong)

	#10137 75171f0 Remove unused import. Remove accidental trailing semicolons (practicalswift)

	#10307 83073de [tests] allow zmq test to be run in out-of-tree builds (jnewbery)

	#10344 e927483 [tests] Fix abandonconflict.py intermittency (jnewbery)

	#10318 170bc2c [tests] fix wait_for_inv() (jnewbery)

	#10171 fff72de [tests] Add node methods to test framework (jnewbery)

	#10352 23d78c4 test: Add elapsed time to RPC tracing (laanwj)

	#10342 6a796b2 [tests] Improve mempool_persist test (jnewbery)

	#10287 776ba23 [tests] Update Unit Test for addrman.h/addrman.cpp (jimmysong)

	#10365 7ee5236 [tests] increase timeouts in sendheaders test (jnewbery)

	#10361 f6241b3 qa: disablewallet: Check that wallet is really disabled (MarcoFalke)

	#10371 4b766fc [tests] Clean up addrman_tests.cpp (jimmysong)

	#10253 87abe20 [test] Add test for getnetworkhashps (jimmysong)

	#10376 8bd16ee [tests] fix disconnect_ban intermittency (jnewbery)

	#10374 5411997 qa: Warn when specified test is not found (MarcoFalke)

	#10405 0542978 tests: Correct testcase in script_tests.json for large number OP_EQUAL (laanwj)

	#10429 6b99daf tests: fix spurious addrman test failure (theuni)

	#10433 8e57256 [tests] improve tmpdir structure (jnewbery)

	#10415 217b416 [tests] Speed up fuzzing by ~200x when using afl-fuzz (practicalswift)

	#10445 b4b057a Add test for empty chain and reorg consistency for gettxoutsetinfo (gmaxwell)

	#10423 1aefc94 [tests] skipped tests should clean up after themselves (jnewbery)

	#10359 329fc1d [tests] functional tests should call BitcoinTestFramework start/stop node methods (jnewbery)

	#10514 e103b3f Bugfix: missing == 0 after randrange (sipa)

	#10515 c871f32 [test] Add test for getchaintxstats (jimmysong)

	#10509 bea5b00 Remove xvfb configuration from travis (ryanofsky)

	#10535 30853e1 [qa] fundrawtx: Fix shutdown race (MarcoFalke)

	#9909 300f8e7 tests: Add FindEarliestAtLeast test for edge cases (ryanofsky)

	#10331 75e898c Share config between util and functional tests (jnewbery)

	#10321 e801084 Use FastRandomContext for all tests (sipa)

	#10524 6c2d81f [tests] Remove printf(...) (practicalswift)

	#10547 71ab6e5 [tests] Use FastRandomContext instead of boost::random::{mt19937,uniform_int_distribution} (practicalswift)

	#10551 6702617 [Tests] Wallet encryption functional tests (achow101)

	#10555 643fa0b [tests] various improvements to zmq_test.py (jnewbery)

	#10533 d083bd9 [tests] Use cookie auth instead of rpcuser and rpcpassword (achow101)

	#10632 c68a9a6 qa: Add stopatheight test (MarcoFalke)

	#10636 4bc853b [qa] util: Check return code after closing bitcoind proc (MarcoFalke)

	#10662 e0a7801 Initialize randomness in benchmarks (achow101)

	#10612 7c87a9c The young person’s guide to the test_framework (jnewbery)

	#10659 acb1153 [qa] blockchain: Pass on closed connection during generate call (MarcoFalke)

	#10690 416af3e [qa] Bugfix: allow overriding extra_args in ComparisonTestFramework (sdaftuar)

	#10556 65cc7aa Move stop/start functions from utils.py into BitcoinTestFramework (jnewbery)

	#10704 dd07f47 [tests] nits in dbcrash.py (jnewbery)

	#10743 be82498 [test] don’t run dbcrash.py on Travis (jnewbery)

	#10761 d3b5870 [tests] fix replace_by_fee.py (jnewbery)

	#10759 1d4805c Fix multi_rpc test for hosts that dont default to utf8 (TheBlueMatt)

	#10190 e4f226a [tests] mining functional tests (including regression test for submitblock) (jnewbery)

	#10739 1fc783f test: Move variable state down where it is used (paveljanik)

	#9980 fee0d80 Fix mem access violation merkleblock (Christewart)

	#10893 0c173a1 [QA] Avoid running multiwallet.py twice (jonasschnelli)

	#10927 9d5e8f9 test: Make sure wallet.backup is created in temp path (laanwj)

	#10899 f29d5db [test] Qt: Use _putenv_s instead of setenv on Windows builds (brianmcmichael)

	#10912 5c8eb79 [tests] Fix incorrect memory_cleanse(…) call in crypto_tests.cpp (practicalswift)

	#11001 fa8a063 [tests] Test disconnecting unsupported service bits logic (jnewbery)

	#10695 929fd72 [qa] Rewrite BIP65/BIP66 functional tests (sdaftuar)

	#10963 ecd2135 [bench] Restore format state of cout after printing with std::fixed/setprecision (practicalswift)

	#11025 e5d26e4 qa: Fix inv race in example_test (MarcoFalke)

	#10765 2c811e0 Tests: address placement should be deterministic by default (ReneNyffenegger)

	#11000 ac016e1 test: Add resendwallettransactions functional tests (promag)

	#11032 aeb3175 [qa] Fix block message processing error in sendheaders.py (sdaftuar)

	#10105 0b9fb68 [tests] fixup - make all Travis test runs quiet, non just cron job runs (jnewbery)

	#10222 6ce7337 [tests] test_runner - check unicode (jnewbery)

	#10327 35da2ae [tests] remove import-abort-rescan.py (jnewbery)

	#11023 bf74d37 [tests] Add option to attach a python debugger if functional test fails (jnewbery)

	#10565 8c2098a [coverage] Remove subtrees and benchmarks from coverage report (achow101)

Miscellaneous

	#9871 be8ba2c Add a tree sha512 hash to merge commits (sipa)

	#9821 d19d45a util: Specific GetOSRandom for Linux/FreeBSD/OpenBSD (laanwj)

	#9903 ba80a68 Docs: add details to -rpcclienttimeout doc (ian-kelling)

	#9910 53c300f Docs: correct and elaborate -rpcbind doc (ian-kelling)

	#9905 01b7cda [contrib] gh-merge: Move second sha512 check to the end (MarcoFalke)

	#9880 4df8213 Verify Tree-SHA512s in merge commits, enforce sigs are not SHA1 (TheBlueMatt)

	#9932 00c13ea Fix verify-commits on travis and always check top commit’s tree (TheBlueMatt)

	#9952 6996e06 Add historical release notes for 0.14.0 (laanwj)

	#9940 fa99663 Fix verify-commits on OSX, update for new bad Tree-SHA512, point travis to different keyservers (TheBlueMatt)

	#9963 8040ae6 util: Properly handle errors during log message formatting (laanwj)

	#9984 cce056d devtools: Make github-merge compute SHA512 from git, instead of worktree (laanwj)

	#9995 8bcf934 [doc] clarify blockchain size and pruning (askmike)

	#9734 0c17afc Add updating of chainTxData to release process (sipa)

	#10063 530fcbd add missing spaces so that markdown recognizes headline (flack)

	#10085 db1ae54 Docs: remove ‘noconnect’ option (jlopp)

	#10090 8e4f7e7 Update bitcoin.conf with example for pruning (coinables)

	#9424 1a5aaab Change LogAcceptCategory to use uint32_t rather than sets of strings (gmaxwell)

	#10036 fbf36ca Fix init README format to render correctly on github (jlopp)

	#10058 a2cd0b0 No need to use OpenSSL malloc/free (tjps)

	#10123 471ed00 Allow debug logs to be excluded from specified component (jnewbery)

	#10104 fadf078 linearize script: Option to use RPC cookie (achow101)

	#10162 a3a2160 [trivial] Log calls to getblocktemplate (jnewbery)

	#10155 928695b build: Deduplicate version numbers (laanwj)

	#10211 a86255b [doc] Contributor fixes & new “finding reviewers” section (kallewoof)

	#10250 1428f30 Fix some empty vector references (sipa)

	#10270 95f5e44 Remove Clang workaround for Boost 1.46 (fanquake)

	#10263 cb007e4 Trivial: fix fee estimate write error log message (CryptAxe)

	#9670 bd9ec0e contrib: github-merge improvements (laanwj)

	#10260 1d75597 [doc] Minor corrections to osx dependencies (fanquake)

	#10189 750c5a5 devtools/net: add a verifier for scriptable changes. Use it to make CNode::id private (theuni)

	#10322 bc64b5a Use hardware timestamps in RNG seeding (sipa)

	#10381 7f2b9e0 Shadowing warnings are not enabled by default, update doc accordingly (paveljanik)

	#10380 b6ee855 [doc] Removing comments about dirty entries on txmempool (madeo)

	#10383 d0c37ee [logging] log system time and mock time (jnewbery)

	#10404 b45a52a doc: Add logging to FinalizeNode() (sdaftuar)

	#10388 526e839 Output line to debug.log when IsInitialBlockDownload latches to false (morcos)

	#10372 15254e9 Add perf counter data to GetStrongRandBytes state in scheduler (TheBlueMatt)

	#10461 55b72f3 Update style guide (sipa)

	#10486 10e8c0a devtools: Retry after signing fails in github-merge (laanwj)

	#10447 f259263 Make bitcoind invalid argument error message specific (laanwj)

	#10495 6a38b79 contrib: Update location of seeds.txt (laanwj)

	#10469 b6b150b Fixing typo in rpcdump.cpp help message (keystrike)

	#10451 27b9931 contrib/init/bitcoind.openrcconf: Don’t disable wallet by default (luke-jr)

	#10323 00d3692 Update to latest libsecp256k1 master (sipa)

	#10422 cec9e1e Fix timestamp in fee estimate debug message (morcos)

	#10566 5d034ee [docs] Use the “domain name setup” image (previously unused) in the gitian docs (practicalswift)

	#10534 a514ac3 Clarify prevector::erase and avoid swap-to-clear (sipa)

	#10575 22ec768 Header include guideline (sipa)

	#10480 fbf5d3b Improve commit-check-script.sh (sipa)

	#10502 1ad3d4e scripted-diff: Remove BOOST_FOREACH, Q_FOREACH and PAIRTYPE (jtimon)

	#10377 b63be2c Use rdrand as entropy source on supported platforms (sipa)

	#9895 228c319 Turn TryCreateDirectory() into TryCreateDirectories() (benma)

	#10602 d76e84a Make clang-format use C++11 features (e.g. A<A> instead of A<A >) (practicalswift)

 How to Upgrade

 Bitcoin Core version 0.15.0.1 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.15.0.1/

and

https://bitcoincore.org/bin/bitcoin-core-0.15.0.1/

This is a minor bug fix for 0.15.0.

Please report bugs using the issue tracker at GitHub:

https://github.com/bitcoin/bitcoin/issues

To receive security and update notifications, please subscribe to:

https://bitcoincore.org/en/list/announcements/join/

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac)
or bitcoind/bitcoin-qt (on Linux).

The first time you run version 0.15.0 or higher, your chainstate database will
be converted to a new format, which will take anywhere from a few minutes to
half an hour, depending on the speed of your machine.

The file format of fee_estimates.dat changed in version 0.15.0. Hence, a
downgrade from version 0.15.0 or upgrade to version 0.15.0 will cause all fee
estimates to be discarded.

Note that the block database format also changed in version 0.8.0 and there is no
automatic upgrade code from before version 0.8 to version 0.15.0. Upgrading
directly from 0.7.x and earlier without redownloading the blockchain is not supported.
However, as usual, old wallet versions are still supported.

Downgrading warning

The chainstate database for this release is not compatible with previous
releases, so if you run 0.15 and then decide to switch back to any
older version, you will need to run the old release with the -reindex-chainstate
option to rebuild the chainstate data structures in the old format.

If your node has pruning enabled, this will entail re-downloading and
processing the entire blockchain.

Compatibility

Bitcoin Core is extensively tested on multiple operating systems using
the Linux kernel, macOS 10.8+, and Windows Vista and later. Windows XP is not supported.

Bitcoin Core should also work on most other Unix-like systems but is not
frequently tested on them.

Notable changes

GUI startup crash issue

After upgrade to 0.15.0, some clients would crash at startup because a custom
fee setting was configured that no longer exists in the GUI. This is a minimal
patch to avoid this issue from occuring.

0.15.0.1 Change log

	#11332 46c8d23 Fix possible crash with invalid nCustomFeeRadio in QSettings (achow101, TheBlueMatt)

Also the manpages were updated, as this was forgotten for 0.15.0.

Credits

Thanks to everyone who directly contributed to this release:

	Andrew Chow

	Matt Corallo

	Jonas Schnelli

	Wladimir J. van der Laan

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Win32, Linux, MacOSX and source releases for bitcoin v0.3.23 have been uploaded to
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.23/

This is another quick bugfix release, trying to deal with the influx of new bitcoin users.

Main items of note:

	P2P connect-to-node logic changed to reduce timeout a bit. The network saw a huge influx of new users, who do not permit incoming connections. This change is a short-term hack, to more quickly hunt for useful P2P connections. Better “leaf node” logic is in the works, but this should let us limp along until then. One may use -upnp to properly forward ports, and help the network.

	Transaction fee reduced to 0.0005 for new transactions

	Client will relay transactions with fees as low as 0.0001 BTC

 Upgrading and downgrading

 Bitcoin Core version 0.12.1 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.12.1/

This is a new minor version release, including the BIP9, BIP68 and BIP112
softfork, various bugfixes and updated translations.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Downgrade to a version < 0.12.0

Because release 0.12.0 and later will obfuscate the chainstate on every
fresh sync or reindex, the chainstate is not backwards-compatible with
pre-0.12 versions of Bitcoin Core or other software.

If you want to downgrade after you have done a reindex with 0.12.0 or later,
you will need to reindex when you first start Bitcoin Core version 0.11 or
earlier.

Notable changes

First version bits BIP9 softfork deployment

This release includes a soft fork deployment to enforce BIP68 [https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki],
BIP112 [https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki] and BIP113 [https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki] using the BIP9 [https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki] deployment mechanism.

The deployment sets the block version number to 0x20000001 between
midnight 1st May 2016 and midnight 1st May 2017 to signal readiness for
deployment. The version number consists of 0x20000000 to indicate version
bits together with setting bit 0 to indicate support for this combined
deployment, shown as “csv” in the getblockchaininfo RPC call.

For more information about the soft forking change, please see
https://github.com/bitcoin/bitcoin/pull/7648

This specific backport pull-request can be viewed at
https://github.com/bitcoin/bitcoin/pull/7543

BIP68 soft fork to enforce sequence locks for relative locktime

BIP68 [https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki] introduces relative lock-time consensus-enforced semantics of
the sequence number field to enable a signed transaction input to remain
invalid for a defined period of time after confirmation of its corresponding
outpoint.

For more information about the implementation, see
https://github.com/bitcoin/bitcoin/pull/7184

BIP112 soft fork to enforce OP_CHECKSEQUENCEVERIFY

BIP112 [https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki] redefines the existing OP_NOP3 as OP_CHECKSEQUENCEVERIFY (CSV)
for a new opcode in the Bitcoin scripting system that in combination with
BIP68 [https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki] allows execution pathways of a script to be restricted based
on the age of the output being spent.

For more information about the implementation, see
https://github.com/bitcoin/bitcoin/pull/7524

BIP113 locktime enforcement soft fork

Bitcoin Core 0.11.2 previously introduced mempool-only locktime
enforcement using GetMedianTimePast(). This release seeks to
consensus enforce the rule.

Bitcoin transactions currently may specify a locktime indicating when
they may be added to a valid block. Current consensus rules require
that blocks have a block header time greater than the locktime specified
in any transaction in that block.

Miners get to choose what time they use for their header time, with the
consensus rule being that no node will accept a block whose time is more
than two hours in the future. This creates a incentive for miners to
set their header times to future values in order to include locktimed
transactions which weren’t supposed to be included for up to two more
hours.

The consensus rules also specify that valid blocks may have a header
time greater than that of the median of the 11 previous blocks. This
GetMedianTimePast() time has a key feature we generally associate with
time: it can’t go backwards.

BIP113 [https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki] specifies a soft fork enforced in this release that
weakens this perverse incentive for individual miners to use a future
time by requiring that valid blocks have a computed GetMedianTimePast()
greater than the locktime specified in any transaction in that block.

Mempool inclusion rules currently require transactions to be valid for
immediate inclusion in a block in order to be accepted into the mempool.
This release begins applying the BIP113 rule to received transactions,
so transaction whose time is greater than the GetMedianTimePast() will
no longer be accepted into the mempool.

Implication for miners: you will begin rejecting transactions that
would not be valid under BIP113, which will prevent you from producing
invalid blocks when BIP113 is enforced on the network. Any
transactions which are valid under the current rules but not yet valid
under the BIP113 rules will either be mined by other miners or delayed
until they are valid under BIP113. Note, however, that time-based
locktime transactions are more or less unseen on the network currently.

Implication for users: GetMedianTimePast() always trails behind the
current time, so a transaction locktime set to the present time will be
rejected by nodes running this release until the median time moves
forward. To compensate, subtract one hour (3,600 seconds) from your
locktimes to allow those transactions to be included in mempools at
approximately the expected time.

For more information about the implementation, see
https://github.com/bitcoin/bitcoin/pull/6566

Miscellaneous

The p2p alert system is off by default. To turn on, use -alert with
startup configuration.

0.12.1 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

RPC and other APIs

	#7739 7ffc2bd Add abandoned status to listtransactions (jonasschnelli)

Block and transaction handling

	#7543 834aaef Backport BIP9, BIP68 and BIP112 with softfork (btcdrak)

P2P protocol and network code

	#7804 90f1d24 Track block download times per individual block (sipa)

	#7832 4c3a00d Reduce block timeout to 10 minutes (laanwj)

Validation

	#7821 4226aac init: allow shutdown during ‘Activating best chain...’ (laanwj)

	#7835 46898e7 Version 2 transactions remain non-standard until CSV activates (sdaftuar)

Build system

	#7487 00d57b4 Workaround Travis-side CI issues (luke-jr)

	#7606 a10da9a No need to set -L and –location for curl (MarcoFalke)

	#7614 ca8f160 Add curl to packages (now needed for depends) (luke-jr)

	#7776 a784675 Remove unnecessary executables from gitian release (laanwj)

Wallet

	#7715 19866c1 Fix calculation of balances and available coins. (morcos)

Miscellaneous

	#7617 f04f4fd Fix markdown syntax and line terminate LogPrint (MarcoFalke)

	#7747 4d035bc added depends cross compile info (accraze)

	#7741 a0cea89 Mark p2p alert system as deprecated (btcdrak)

	#7780 c5f94f6 Disable bad-chain alert (btcdrak)

Credits

Thanks to everyone who directly contributed to this release:

	accraze

	Alex Morcos

	BtcDrak

	Jonas Schnelli

	Luke Dashjr

	MarcoFalke

	Mark Friedenbach

	NicolasDorier

	Pieter Wuille

	Suhas Daftuar

	Wladimir J. van der Laan

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Never released or release notes were lost.

 <no title>

 Bitcoin version 0.5.3 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.3/

This is a bugfix-only release based on 0.5.1.
It also includes a few protocol updates.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.3#.tar.gz

PROTOCOL UPDATES

BIP 30: Introduce a new network rule: “a block is not valid if it contains a transaction whose hash already exists in the block chain, unless all that transaction’s outputs were already spent before said block” beginning on March 15, 2012, 00:00 UTC.
On testnet, allow mining of min-difficulty blocks if 20 minutes have gone by without mining a regular-difficulty block. This is to make testing Bitcoin easier, and will not affect normal mode.

BUG FIXES

Limit the number of orphan transactions stored in memory, to prevent a potential denial-of-service attack by flooding orphan transactions. Also never store invalid transactions at all.
Fix possible buffer overflow on systems with very long application data paths. This is not exploitable.
Resolved multiple bugs preventing long-term unlocking of encrypted wallets
(issue #922).
Only send local IP in “version” messages if it is globally routable (ie, not private), and try to get such an IP from UPnP if applicable.
Reannounce UPnP port forwards every 20 minutes, to workaround routers expiring old entries, and allow the -upnp option to override any stored setting.
Skip splash screen when -min is used, and fix Minimize to Tray function.
Do not blank “label” in Bitcoin-Qt “Send” tab, if the user has already entered something.
Correct various labels and messages.
Various memory leaks and potential null pointer deferences have been fixed.
Handle invalid Bitcoin URIs using “bitcoin://” instead of “bitcoin:”.
Several shutdown issues have been fixed.
Revert to “global progress indication”, as starting from zero every time was considered too confusing for many users.
Check that keys stored in the wallet are valid at startup, and if not, report corruption.
Enable accessible widgets on Windows, so that people with screen readers such as NVDA can make sense of it.
Various build fixes.
If no password is specified to bitcoind, recommend a secure password.
Automatically focus and scroll to new “Send coins” entries in Bitcoin-Qt.
Show a message box for –help on Windows, for Bitcoin-Qt.
Add missing “About Qt” menu option to show built-in Qt About dialog.
Don’t show “-daemon” as an option for Bitcoin-Qt, since it isn’t available.
Update hard-coded fallback seed nodes, choosing recent ones with long uptime and versions at least 0.4.0.
Add checkpoint at block 168,000.

 <no title>

 Version 0.3.12 is now available.

Features:

	json-rpc errors return a more standard error object. (thanks to Gavin Andresen)

	json-rpc command line returns exit codes.

	json-rpc “backupwallet” command.

	Recovers and continues if an exception is caused by a message you received. Other nodes shouldn’t be able to cause an exception, and it hasn’t happened before, but if a way is found to cause an exception, this would keep it from being used to stop network nodes.

If you have json-rpc code that checks the contents of the error string, you need to change it to expect error objects of the form {“code”:,”message”:}, which is the standard. See this thread:
http://www.bitcoin.org/smf/index.php?topic=969.0

 Compatibility

 Bitcoin Core version 0.13.0 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.13.0/

This is a new major version release, including new features, various bugfixes
and performance improvements, as well as updated translations.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

To receive security and update notifications, please subscribe to:

https://bitcoincore.org/en/list/announcements/join/

Compatibility

Microsoft ended support for Windows XP on April 8th, 2014 [https://www.microsoft.com/en-us/WindowsForBusiness/end-of-xp-support],
an OS initially released in 2001. This means that not even critical security
updates will be released anymore. Without security updates, using a bitcoin
wallet on a XP machine is irresponsible at least.

In addition to that, with 0.12.x there have been varied reports of Bitcoin Core
randomly crashing on Windows XP. It is not clear [https://github.com/bitcoin/bitcoin/issues/7681#issuecomment-217439891]
what the source of these crashes is, but it is likely that upstream
libraries such as Qt are no longer being tested on XP.

We do not have time nor resources to provide support for an OS that is
end-of-life. From 0.13.0 on, Windows XP is no longer supported. Users are
suggested to upgrade to a newer verion of Windows, or install an alternative OS
that is supported.

No attempt is made to prevent installing or running the software on Windows XP,
you can still do so at your own risk, but do not expect it to work: do not
report issues about Windows XP to the issue tracker.

Notable changes

Database cache memory increased

As a result of growth of the UTXO set, performance with the prior default
database cache of 100 MiB has suffered.
For this reason the default was changed to 300 MiB in this release.

For nodes on low-memory systems, the database cache can be changed back to
100 MiB (or to another value) by either:

	Adding dbcache=100 in bitcoin.conf

	Changing it in the GUI under Options → Size of database cache

Note that the database cache setting has the most performance impact
during initial sync of a node, and when catching up after downtime.

bitcoin-cli: arguments privacy

The RPC command line client gained a new argument, -stdin
to read extra arguments from standard input, one per line until EOF/Ctrl-D.
For example:

$ src/bitcoin-cli -stdin walletpassphrase
mysecretcode
120
..... press Ctrl-D here to end input
$

It is recommended to use this for sensitive information such as wallet
passphrases, as command-line arguments can usually be read from the process
table by any user on the system.

C++11 and Python 3

Various code modernizations have been done. The Bitcoin Core code base has
started using C++11. This means that a C++11-capable compiler is now needed for
building. Effectively this means GCC 4.7 or higher, or Clang 3.3 or higher.

When cross-compiling for a target that doesn’t have C++11 libraries, configure with
./configure --enable-glibc-back-compat ... LDFLAGS=-static-libstdc++.

For running the functional tests in qa/rpc-tests, Python3.4 or higher is now
required.

Linux ARM builds

Due to popular request, Linux ARM builds have been added to the uploaded
executables.

The following extra files can be found in the download directory or torrent:

	bitcoin-${VERSION}-arm-linux-gnueabihf.tar.gz: Linux binaries targeting
the 32-bit ARMv7-A architecture.

	bitcoin-${VERSION}-aarch64-linux-gnu.tar.gz: Linux binaries targeting
the 64-bit ARMv8-A architecture.

ARM builds are still experimental. If you have problems on a certain device or
Linux distribution combination please report them on the bug tracker, it may be
possible to resolve them. Note that the device you use must be (backward)
compatible with the architecture targeted by the binary that you use.
For example, a Raspberry Pi 2 Model B or Raspberry Pi 3 Model B (in its 32-bit
execution state) device, can run the 32-bit ARMv7-A targeted binary. However,
no model of Raspberry Pi 1 device can run either binary because they are all
ARMv6 architecture devices that are not compatible with ARMv7-A or ARMv8-A.

Note that Android is not considered ARM Linux in this context. The executables
are not expected to work out of the box on Android.

Compact Block support (BIP 152)

Support for block relay using the Compact Blocks protocol has been implemented
in PR 8068.

The primary goal is reducing the bandwidth spikes at relay time, though in many
cases it also reduces propagation delay. It is automatically enabled between
compatible peers.
BIP 152 [https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki]

As a side-effect, ordinary non-mining nodes will download and upload blocks
faster if those blocks were produced by miners using similar transaction
filtering policies. This means that a miner who produces a block with many
transactions discouraged by your node will be relayed slower than one with
only transactions already in your memory pool. The overall effect of such
relay differences on the network may result in blocks which include widely-
discouraged transactions losing a stale block race, and therefore miners may
wish to configure their node to take common relay policies into consideration.

Hierarchical Deterministic Key Generation

Newly created wallets will use hierarchical deterministic key generation
according to BIP32 (keypath m/0’/0’/k’).
Existing wallets will still use traditional key generation.

Backups of HD wallets, regardless of when they have been created, can
therefore be used to re-generate all possible private keys, even the
ones which haven’t already been generated during the time of the backup.
Attention: Encrypting the wallet will create a new seed which requires
a new backup!

Wallet dumps (created using the dumpwallet RPC) will contain the deterministic
seed. This is expected to allow future versions to import the seed and all
associated funds, but this is not yet implemented.

HD key generation for new wallets can be disabled by -usehd=0. Keep in
mind that this flag only has affect on newly created wallets.
You can’t disable HD key generation once you have created a HD wallet.

There is no distinction between internal (change) and external keys.

HD wallets are incompatible with older versions of Bitcoin Core.

Pull request [https://github.com/bitcoin/bitcoin/pull/8035/files], BIP 32 [https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki]

Segregated Witness

The code preparations for Segregated Witness (“segwit”), as described in BIP
141 [https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki], BIP
143 [https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki], BIP
144 [https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki], and BIP
145 [https://github.com/bitcoin/bips/blob/master/bip-0145.mediawiki] are
finished and included in this release. However, BIP 141 does not yet specify
activation parameters on mainnet, and so this release does not support segwit
use on mainnet. Testnet use is supported, and after BIP 141 is updated with
proposed parameters, a future release of Bitcoin Core is expected that
implements those parameters for mainnet.

Furthermore, because segwit activation is not yet specified for mainnet,
version 0.13.0 will behave similarly as other pre-segwit releases even after a
future activation of BIP 141 on the network. Upgrading from 0.13.0 will be
required in order to utilize segwit-related features on mainnet (such as signal
BIP 141 activation, mine segwit blocks, fully validate segwit blocks, relay
segwit blocks to other segwit nodes, and use segwit transactions in the
wallet, etc).

Mining transaction selection (“Child Pays For Parent”)

The mining transaction selection algorithm has been replaced with an algorithm
that selects transactions based on their feerate inclusive of unconfirmed
ancestor transactions. This means that a low-fee transaction can become more
likely to be selected if a high-fee transaction that spends its outputs is
relayed.

With this change, the -blockminsize command line option has been removed.

The command line option -blockmaxsize remains an option to specify the
maximum number of serialized bytes in a generated block. In addition, the new
command line option -blockmaxweight has been added, which specifies the
maximum “block weight” of a generated block, as defined by [BIP 141 (Segregated
Witness)] (https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki).

In preparation for Segregated Witness, the mining algorithm has been modified
to optimize transaction selection for a given block weight, rather than a given
number of serialized bytes in a block. In this release, transaction selection
is unaffected by this distinction (as BIP 141 activation is not supported on
mainnet in this release, see above), but in future releases and after BIP 141
activation, these calculations would be expected to differ.

For optimal runtime performance, miners using this release should specify
-blockmaxweight on the command line, and not specify -blockmaxsize.
Additionally (or only) specifying -blockmaxsize, or relying on default
settings for both, may result in performance degradation, as the logic to
support -blockmaxsize performs additional computation to ensure that
constraint is met. (Note that for mainnet, in this release, the equivalent
parameter for -blockmaxweight would be four times the desired
-blockmaxsize. See [BIP 141]
(https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki) for additional
details.)

In the future, the -blockmaxsize option may be removed, as block creation is
no longer optimized for this metric. Feedback is requested on whether to
deprecate or keep this command line option in future releases.

Reindexing changes

In earlier versions, reindexing did validation while reading through the block
files on disk. These two have now been split up, so that all blocks are known
before validation starts. This was necessary to make certain optimizations that
are available during normal synchronizations also available during reindexing.

The two phases are distinct in the Bitcoin-Qt GUI. During the first one,
“Reindexing blocks on disk” is shown. During the second (slower) one,
“Processing blocks on disk” is shown.

It is possible to only redo validation now, without rebuilding the block index,
using the command line option -reindex-chainstate (in addition to
-reindex which does both). This new option is useful when the blocks on disk
are assumed to be fine, but the chainstate is still corrupted. It is also
useful for benchmarks.

Removal of internal miner

As CPU mining has been useless for a long time, the internal miner has been
removed in this release, and replaced with a simpler implementation for the
test framework.

The overall result of this is that setgenerate RPC call has been removed, as
well as the -gen and -genproclimit command-line options.

For testing, the generate call can still be used to mine a block, and a new
RPC call generatetoaddress has been added to mine to a specific address. This
works with wallet disabled.

New bytespersigop implementation

The former implementation of the bytespersigop filter accidentally broke bare
multisig (which is meant to be controlled by the permitbaremultisig option),
since the consensus protocol always counts these older transaction forms as 20
sigops for backwards compatibility. Simply fixing this bug by counting more
accurately would have reintroduced a vulnerability. It has therefore been
replaced with a new implementation that rather than filter such transactions,
instead treats them (for fee purposes only) as if they were in fact the size
of a transaction actually using all 20 sigops.

Low-level P2P changes

	The optional new p2p message “feefilter” is implemented and the protocol
version is bumped to 70013. Upon receiving a feefilter message from a peer,
a node will not send invs for any transactions which do not meet the filter
feerate. BIP 133 [https://github.com/bitcoin/bips/blob/master/bip-0133.mediawiki]

	The P2P alert system has been removed in PR #7692 and the alert P2P message
is no longer supported.

	The transaction relay mechanism used to relay one quarter of all transactions
instantly, while queueing up the rest and sending them out in batch. As
this resulted in chains of dependent transactions being reordered, it
systematically hurt transaction relay. The relay code was redesigned in PRs
#7840 and #8082, and now always batches transactions announcements while also
sorting them according to dependency order. This significantly reduces orphan
transactions. To compensate for the removal of instant relay, the frequency of
batch sending was doubled for outgoing peers.

	Since PR #7840 the BIP35 mempool command is also subject to batch processing.
Also the mempool message is no longer handled for non-whitelisted peers when
NODE_BLOOM is disabled through -peerbloomfilters=0.

	The maximum size of orphan transactions that are kept in memory until their
ancestors arrive has been raised in PR #8179 from 5000 to 99999 bytes. They
are now also removed from memory when they are included in a block, conflict
with a block, and time out after 20 minutes.

	We respond at most once to a getaddr request during the lifetime of a
connection since PR #7856.

	Connections to peers who have recently been the first one to give us a valid
new block or transaction are protected from disconnections since PR #8084.

Low-level RPC changes

	RPC calls have been added to output detailed statistics for individual mempool
entries, as well as to calculate the in-mempool ancestors or descendants of a
transaction: see getmempoolentry, getmempoolancestors, getmempooldescendants.

	gettxoutsetinfo UTXO hash (hash_serialized) has changed. There was a divergence between
32-bit and 64-bit platforms, and the txids were missing in the hashed data. This has been
fixed, but this means that the output will be different than from previous versions.

	Full UTF-8 support in the RPC API. Non-ASCII characters in, for example,
wallet labels have always been malformed because they weren’t taken into account
properly in JSON RPC processing. This is no longer the case. This also affects
the GUI debug console.

	Asm script outputs replacements for OP_NOP2 and OP_NOP3
	OP_NOP2 has been renamed to OP_CHECKLOCKTIMEVERIFY by BIP
65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki]

	OP_NOP3 has been renamed to OP_CHECKSEQUENCEVERIFY by BIP
112 [https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki]

	The following outputs are affected by this change:
	RPC getrawtransaction (in verbose mode)

	RPC decoderawtransaction

	RPC decodescript

	REST /rest/tx/ (JSON format)

	REST /rest/block/ (JSON format when including extended tx details)

	bitcoin-tx -json

	The sorting of the output of the getrawmempool output has changed.

	New RPC commands: generatetoaddress, importprunedfunds, removeprunedfunds, signmessagewithprivkey,
getmempoolancestors, getmempooldescendants, getmempoolentry,
createwitnessaddress, addwitnessaddress.

	Removed RPC commands: setgenerate, getgenerate.

	New options were added to fundrawtransaction: includeWatching, changeAddress, changePosition and feeRate.

Low-level ZMQ changes

	Each ZMQ notification now contains an up-counting sequence number that allows
listeners to detect lost notifications.
The sequence number is always the last element in a multi-part ZMQ notification and
therefore backward compatible. Each message type has its own counter.
PR #7762 [https://github.com/bitcoin/bitcoin/pull/7762].

0.13.0 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

RPC and other APIs

	#7156 9ee02cf Remove cs_main lock from createrawtransaction (laanwj)

	#7326 2cd004b Fix typo, wrong information in gettxout help text (paveljanik)

	#7222 82429d0 Indicate which transactions are signaling opt-in RBF (sdaftuar)

	#7480 b49a623 Changed getnetworkhps value to double to avoid overflow (instagibbs)

	#7550 8b958ab Input-from-stdin mode for bitcoin-cli (laanwj)

	#7670 c9a1265 Use cached block hash in blockToJSON() (rat4)

	#7726 9af69fa Correct importaddress help reference to importpubkey (CypherGrue)

	#7766 16555b6 Register calls where they are defined (laanwj)

	#7797 e662a76 Fix generatetoaddress failing to parse address (mruddy)

	#7774 916b15a Add versionHex in getblock and getblockheader JSON results (mruddy)

	#7863 72c54e3 Getblockchaininfo: make bip9_softforks an object, not an array (rustyrussell)

	#7842 d97101e Do not print minping time in getpeerinfo when no ping received yet (paveljanik)

	#7518 be14ca5 Add multiple options to fundrawtransaction (promag)

	#7756 9e47fce Add cursor to iterate over utxo set, use this in gettxoutsetinfo (laanwj)

	#7848 88616d2 Divergence between 32- and 64-bit when hashing >4GB affects gettxoutsetinfo (laanwj)

	#7827 4205ad7 Speed up getchaintips (mrbandrews)

	#7762 a1eb344 Append a message sequence number to every ZMQ notification (jonasschnelli)

	#7688 46880ed List solvability in listunspent output and improve help (sipa)

	#7926 5725807 Push back getaddednodeinfo dead value (instagibbs)

	#7953 0630353 Create signmessagewithprivkey rpc (achow101)

	#8049 c028c7b Expose information on whether transaction relay is enabled in getnetworkinfo (laanwj)

	#7967 8c1e49b Add feerate option to fundrawtransaction (jonasschnelli)

	#8118 9b6a48c Reduce unnecessary hashing in signrawtransaction (jonasnick)

	#7957 79004d4 Add support for transaction sequence number (jonasschnelli)

	#8153 75ec320 fundrawtransaction feeRate: Use BTC/kB (MarcoFalke)

	#7292 7ce9ac5 Expose ancestor/descendant information over RPC (sdaftuar)

	#8171 62fcf27 Fix createrawtx sequence number unsigned int parsing (jonasschnelli)

	#7892 9c3d0fa Add full UTF-8 support to RPC (laanwj)

	#8317 304eff3 Don’t use floating point in rpcwallet (MarcoFalke)

	#8258 5a06ebb Hide softfork in getblockchaininfo if timeout is 0 (jl2012)

	#8244 1922e5a Remove unnecessary LOCK(cs_main) in getrawmempool (dcousens)

Block and transaction handling

	#7056 6a07208 Save last db read (morcos)

	#6842 0192806 Limitfreerelay edge case bugfix (ptschip)

	#7084 11d74f6 Replace maxFeeRate of 10000*minRelayTxFee with maxTxFee in mempool (MarcoFalke)

	#7539 9f33dba Add tags to mempool’s mapTx indices (sdaftuar)

	#7592 26a2a72 Re-remove ERROR logging for mempool rejects (laanwj)

	#7187 14d6324 Keep reorgs fast for SequenceLocks checks (morcos)

	#7594 01f4267 Mempool: Add tracking of ancestor packages (sdaftuar)

	#7904 fc9e334 Txdb: Fix assert crash in new UTXO set cursor (laanwj)

	#7927 f9c2ac7 Minor changes to dbwrapper to simplify support for other databases (laanwj)

	#7933 e26b620 Fix OOM when deserializing UTXO entries with invalid length (sipa)

	#8020 5e374f7 Use SipHash-2-4 for various non-cryptographic hashes (sipa)

	#8076 d720980 VerifyDB: don’t check blocks that have been pruned (sdaftuar)

	#8080 862fd24 Do not use mempool for GETDATA for tx accepted after the last mempool req (gmaxwell)

	#7997 a82f033 Replace mapNextTx with slimmer setSpends (kazcw)

	#8220 1f86d64 Stop trimming when mapTx is empty (sipa)

	#8273 396f9d6 Bump -dbcache default to 300MiB (laanwj)

	#7225 eb33179 Eliminate unnecessary call to CheckBlock (sdaftuar)

	#7907 006cdf6 Optimize and Cleanup CScript::FindAndDelete (pstratem)

	#7917 239d419 Optimize reindex (sipa)

	#7763 3081fb9 Put hex-encoded version in UpdateTip (sipa)

	#8149 d612837 Testnet-only segregated witness (sipa)

	#8305 3730393 Improve handling of unconnecting headers (sdaftuar)

	#8363 fca1a41 Rename “block cost” to “block weight” (sdaftuar)

	#8381 f84ee3d Make witness v0 outputs non-standard (jl2012)

	#8364 3f65ba2 Treat high-sigop transactions as larger rather than rejecting them (sipa)

P2P protocol and network code

	#6589 dc0305d Log bytes recv/sent per command (jonasschnelli)

	#7164 3b43cad Do not download transactions during initial blockchain sync (ptschip)

	#7458 898fedf peers.dat, banlist.dat recreated when missing (kirkalx)

	#7637 3da5d1b Fix memleak in TorController (laanwj, jonasschnelli)

	#7553 9f14e5a Remove vfReachable and modify IsReachable to only use vfLimited (pstratem)

	#7708 9426632 De-neuter NODE_BLOOM (pstratem)

	#7692 29b2be6 Remove P2P alert system (btcdrak)

	#7542 c946a15 Implement “feefilter” P2P message (morcos)

	#7573 352fd57 Add -maxtimeadjustment command line option (mruddy)

	#7570 232592a Add IPv6 Link-Local Address Support (mruddy)

	#7874 e6a4d48 Improve AlreadyHave (morcos)

	#7856 64e71b3 Only send one GetAddr response per connection (gmaxwell)

	#7868 7daa3ad Split DNS resolving functionality out of net structures (theuni)

	#7919 7617682 Fix headers announcements edge case (sdaftuar)

	#7514 d9594bf Fix IsInitialBlockDownload for testnet (jmacwhyte)

	#7959 03cf6e8 fix race that could fail to persist a ban (kazcw)

	#7840 3b9a0bf Several performance and privacy improvements to inv/mempool handling (sipa)

	#8011 65aecda Don’t run ThreadMessageHandler at lowered priority (kazcw)

	#7696 5c3f8dd Fix de-serialization bug where AddrMan is left corrupted (EthanHeilman)

	#7932 ed749bd CAddrMan::Deserialize handle corrupt serializations better (pstratem)

	#7906 83121cc Prerequisites for p2p encapsulation changes (theuni)

	#8033 18436d8 Fix Socks5() connect failures to be less noisy and less unnecessarily scary (wtogami)

	#8082 01d8359 Defer inserting into maprelay until just before relaying (gmaxwell)

	#7960 6a22373 Only use AddInventoryKnown for transactions (sdaftuar)

	#8078 2156fa2 Disable the mempool P2P command when bloom filters disabled (petertodd)

	#8065 67c91f8 Addrman offline attempts (gmaxwell)

	#7703 761cddb Tor: Change auth order to only use password auth if -torpassword (laanwj)

	#8083 cd0c513 Add support for dnsseeds with option to filter by servicebits (jonasschnelli)

	#8173 4286f43 Use SipHash for node eviction (sipa)

	#8154 1445835 Drop vAddrToSend after sending big addr message (kazcw)

	#7749 be9711e Enforce expected outbound services (sipa)

	#8208 0a64777 Do not set extra flags for unfiltered DNS seed results (sipa)

	#8084 e4bb4a8 Add recently accepted blocks and txn to AttemptToEvictConnection (gmaxwell)

	#8113 3f89a53 Rework addnode behaviour (sipa)

	#8179 94ab58b Evict orphans which are included or precluded by accepted blocks (gmaxwell)

	#8068 e9d76a1 Compact Blocks (TheBlueMatt)

	#8204 0833894 Update petertodd’s testnet seed (petertodd)

	#8247 5cd35d3 Mark my dnsseed as supporting filtering (sipa)

	#8275 042c323 Remove bad chain alert partition check (btcdrak)

	#8271 1bc9c80 Do not send witnesses in cmpctblock (sipa)

	#8312 ca40ef6 Fix mempool DoS vulnerability from malleated transactions (sdaftuar)

	#7180 16ccb74 Account for sendheaders verack messages (laanwj)

	#8102 425278d Bugfix: use global ::fRelayTxes instead of CNode in version send (sipa)

	#8408 b7e2011 Prevent fingerprinting, disk-DoS with compact blocks (sdaftuar)

Build system

	#7302 41f1a3e C++11 build/runtime fixes (theuni)

	#7322 fd9356b c++11: add scoped enum fallbacks to CPPFLAGS rather than defining them locally (theuni)

	#7441 a6771fc Use Debian 8.3 in gitian build guide (fanquake)

	#7349 152a821 Build against system UniValue when available (luke-jr)

	#7520 621940e LibreSSL doesn’t define OPENSSL_VERSION, use LIBRESSL_VERSION_TEXT instead (paveljanik)

	#7528 9b9bfce autogen.sh: warn about needing autoconf if autoreconf is not found (knocte)

	#7504 19324cf Crystal clean make clean (paveljanik)

	#7619 18b3f1b Add missing sudo entry in gitian VM setup (btcdrak)

	#7616 639ec58 [depends] Delete unused patches (MarcoFalke)

	#7658 c15eb28 Add curl to Gitian setup instructions (btcdrak)

	#7710 909b72b [Depends] Bump miniupnpc and config.guess+sub (fanquake)

	#7723 5131005 build: python 3 compatibility (laanwj)

	#7477 28ad4d9 Fix quoting of copyright holders in configure.ac (domob1812)

	#7711 a67bc5e [build-aux] Update Boost & check macros to latest serials (fanquake)

	#7788 4dc1b3a Use relative paths instead of absolute paths in protoc calls (paveljanik)

	#7809 bbd210d depends: some base fixes/changes (theuni)

	#7603 73fc922 Build System: Use PACKAGE_TARNAME in NSIS script (JeremyRand)

	#7905 187186b test: move accounting_tests and rpc_wallet_tests to wallet/test (laanwj)

	#7911 351abf9 leveldb: integrate leveldb into our buildsystem (theuni)

	#7944 a407807 Re-instate TARGET_OS=linux in configure.ac. Removed by 351abf9e035 (randy-waterhouse)

	#7920 c3e3cfb Switch Travis to Trusty (theuni)

	#7954 08b37c5 build: quiet annoying warnings without adding new ones (theuni)

	#7165 06162f1 build: Enable C++11 in build, require C++11 compiler (laanwj)

	#7982 559fbae build: No need to check for leveldb atomics (theuni)

	#8002 f9b4582 [depends] Add -stdlib=libc++ to darwin CXX flags (fanquake)

	#7993 6a034ed [depends] Bump Freetype, ccache, ZeroMQ, miniupnpc, expat (fanquake)

	#8167 19ea173 Ship debug tarballs/zips with debug symbols (theuni)

	#8175 f0299d8 Add –disable-bench to config flags for windows (laanwj)

	#7283 fd9881a [gitian] Default reference_datetime to commit author date (MarcoFalke)

	#8181 9201ce8 Get rid of CLIENT_DATE (laanwj)

	#8133 fde0ac4 Finish up out-of-tree changes (theuni)

	#8188 65a9d7d Add armhf/aarch64 gitian builds (theuni)

	#8194 cca1c8c [gitian] set correct PATH for wrappers (MarcoFalke)

	#8198 5201614 Sync ax_pthread with upstream draft4 (fanquake)

	#8210 12a541e [Qt] Bump to Qt5.6.1 (jonasschnelli)

	#8285 da50997 windows: Add testnet link to installer (laanwj)

	#8304 0cca2fe [travis] Update SDK_URL (MarcoFalke)

	#8310 6ae20df Require boost for bench (theuni)

	#8315 2e51590 Don’t require sudo for Linux (theuni)

	#8314 67caef6 Fix pkg-config issues for 0.13 (theuni)

	#8373 1fe7f40 Fix OSX non-deterministic dmg (theuni)

	#8358 cfd1280 Gbuild: Set memory explicitly (default is too low) (MarcoFalke)

GUI

	#7154 00b4b8d Add InMempool() info to transaction details (jonasschnelli)

	#7068 5f3c670 [RPC-Tests] add simple way to run rpc test over QT clients (jonasschnelli)

	#7218 a1c185b Fix misleading translation (MarcoFalke)

	#7214 be9a9a3 qt5: Use the fixed font the system recommends (MarcoFalke)

	#7256 08ab906 Add note to coin control dialog QT5 workaround (fanquake)

	#7255 e289807 Replace some instances of formatWithUnit with formatHtmlWithUnit (fanquake)

	#7317 3b57e9c Fix RPCTimerInterface ordering issue (jonasschnelli)

	#7327 c079d79 Transaction View: LastMonth calculation fixed (crowning-)

	#7334 e1060c5 coincontrol workaround is still needed in qt5.4 (fixed in qt5.5) (MarcoFalke)

	#7383 ae2db67 Rename “amount” to “requested amount” in receive coins table (jonasschnelli)

	#7396 cdcbc59 Add option to increase/decrease font size in the console window (jonasschnelli)

	#7437 9645218 Disable tab navigation for peers tables (Kefkius)

	#7604 354b03d build: Remove spurious dollar sign. Fixes #7189 (dooglus)

	#7605 7f001bd Remove openssl info from init/log and from Qt debug window (jonasschnelli)

	#7628 87d6562 Add ‘copy full transaction details’ option (ericshawlinux)

	#7613 3798e5d Add autocomplete to bitcoin-qt’s console window (GamerSg)

	#7668 b24266c Fix history deletion bug after font size change (achow101)

	#7680 41d2dfa Remove reflection from about icon (laanwj)

	#7686 f034bce Remove 0-fee from send dialog (MarcoFalke)

	#7506 b88e0b0 Use CCoinControl selection in CWallet::FundTransaction (promag)

	#7732 0b98dd7 Debug window: replace “Build date” with “Datadir” (jonasschnelli)

	#7761 60db51d remove trailing output-index from transaction-id (jonasschnelli)

	#7772 6383268 Clear the input line after activating autocomplete (paveljanik)

	#7925 f604bf6 Fix out-of-tree GUI builds (laanwj)

	#7939 574ddc6 Make it possible to show details for multiple transactions (laanwj)

	#8012 b33824b Delay user confirmation of send (Tyler-Hardin)

	#8006 7c8558d Add option to disable the system tray icon (Tyler-Hardin)

	#8046 169d379 Fix Cmd-Q / Menu Quit shutdown on OSX (jonasschnelli)

	#8042 6929711 Don’t allow to open the debug window during splashscreen & verification state (jonasschnelli)

	#8014 77b49ac Sort transactions by date (Tyler-Hardin)

	#8073 eb2f6f7 askpassphrasedialog: Clear pass fields on accept (rat4)

	#8129 ee1533e Fix RPC console auto completer (UdjinM6)

	#7636 fb0ac48 Add bitcoin address label to request payment QR code (makevoid)

	#8231 760a6c7 Fix a bug where the SplashScreen will not be hidden during startup (jonasschnelli)

	#8256 af2421c BUG: bitcoin-qt crash (fsb4000)

	#8257 ff03c50 Do not ask a UI question from bitcoind (sipa)

	#8288 91abb77 Network-specific example address (laanwj)

	#7707 a914968 UI support for abandoned transactions (jonasschnelli)

	#8207 f7a403b Add a link to the Bitcoin-Core repository and website to the About Dialog (MarcoFalke)

	#8281 6a87eb0 Remove client name from debug window (laanwj)

	#8407 45eba4b Add dbcache migration path (jonasschnelli)

Wallet

	#7262 fc08994 Reduce inefficiency of GetAccountAddress() (dooglus)

	#7537 78e81b0 Warn on unexpected EOF while salvaging wallet (laanwj)

	#7521 3368895 Don’t resend wallet txs that aren’t in our own mempool (morcos)

	#7576 86a1ec5 Move wallet help string creation to CWallet (jonasschnelli)

	#7577 5b3b5a7 Move “load wallet phase” to CWallet (jonasschnelli)

	#7608 0735c0c Move hardcoded file name out of log messages (MarcoFalke)

	#7649 4900641 Prevent multiple calls to CWallet::AvailableCoins (promag)

	#7646 e5c3511 Fix lockunspent help message (promag)

	#7558 b35a591 Add import/removeprunedfunds rpc call (instagibbs)

	#6215 48c5adf add bip32 pub key serialization (jonasschnelli)

	#7913 bafd075 Fix for incorrect locking in GetPubKey() (keystore.cpp) (yurizhykin)

	#8036 41138f9 init: Move berkeleydb version reporting to wallet (laanwj)

	#8028 373b50d Fix insanity of CWalletDB::WriteTx and CWalletTx::WriteToDisk (pstratem)

	#8061 f6b7df3 Improve Wallet encapsulation (pstratem)

	#7891 950be19 Always require OS randomness when generating secret keys (sipa)

	#7689 b89ef13 Replace OpenSSL AES with ctaes-based version (sipa)

	#7825 f972b04 Prevent multiple calls to ExtractDestination (pedrobranco)

	#8137 243ac0c Improve CWallet API with new AccountMove function (pstratem)

	#8142 52c3f34 Improve CWallet API with new GetAccountPubkey function (pstratem)

	#8035 b67a472 Add simplest BIP32/deterministic key generation implementation (jonasschnelli)

	#7687 a6ddb19 Stop treating importaddress’ed scripts as change (sipa)

	#8298 aef3811 wallet: Revert input selection post-pruning (laanwj)

	#8324 bc94b87 Keep HD seed during salvagewallet (jonasschnelli)

	#8323 238300b Add HD keypath to CKeyMetadata, report metadata in validateaddress (jonasschnelli)

	#8367 3b38a6a Ensure <0.13 clients can’t open HD wallets (jonasschnelli)

	#8378 ebea651 Move SetMinVersion for FEATURE_HD to SetHDMasterKey (pstratem)

	#8390 73adfe3 Correct hdmasterkeyid/masterkeyid name confusion (jonasschnelli)

	#8206 18b8ee1 Add HD xpriv to dumpwallet (jonasschnelli)

	#8389 c3c82c4 Create a new HD seed after encrypting the wallet (jonasschnelli)

Tests and QA

	#7320 d3dfc6d Test walletpassphrase timeout (MarcoFalke)

	#7208 47c5ed1 Make max tip age an option instead of chainparam (laanwj)

	#7372 21376af Trivial: [qa] wallet: Print maintenance (MarcoFalke)

	#7280 668906f [travis] Fail when documentation is outdated (MarcoFalke)

	#7177 93b0576 [qa] Change default block priority size to 0 (MarcoFalke)

	#7236 02676c5 Use createrawtx locktime parm in txn_clone (dgenr8)

	#7212 326ffed Adds unittests for CAddrMan and CAddrinfo, removes source of non-determinism (EthanHeilman)

	#7490 d007511 tests: Remove May15 test (laanwj)

	#7531 18cb2d5 Add bip68-sequence.py to extended rpc tests (btcdrak)

	#7536 ce5fc02 test: test leading spaces for ParseHex (laanwj)

	#7620 1b68de3 [travis] Only run check-doc.py once (MarcoFalke)

	#7455 7f96671 [travis] Exit early when check-doc.py fails (MarcoFalke)

	#7667 56d2c4e Move GetTempPath() to testutil (musalbas)

	#7517 f1ca891 test: script_error checking in script_invalid tests (laanwj)

	#7684 3d0dfdb Extend tests (MarcoFalke)

	#7697 622fe6c Tests: make prioritise_transaction.py more robust (sdaftuar)

	#7709 efde86b Tests: fix missing import in mempool_packages (sdaftuar)

	#7702 29e1131 Add tests verifychain, lockunspent, getbalance, listsinceblock (MarcoFalke)

	#7720 3b4324b rpc-test: Normalize assert() (MarcoFalke)

	#7757 26794d4 wallet: Wait for reindex to catch up (MarcoFalke)

	#7764 a65b36c Don’t run pruning.py twice (MarcoFalke)

	#7773 7c80e72 Fix comments in tests (btcdrak)

	#7489 e9723cb tests: Make proxy_test work on travis servers without IPv6 (laanwj)

	#7801 70ac71b Remove misleading “errorString syntax” (MarcoFalke)

	#7803 401c65c maxblocksinflight: Actually enable test (MarcoFalke)

	#7802 3bc71e1 httpbasics: Actually test second connection (MarcoFalke)

	#7849 ab8586e tests: add varints_bitpatterns test (laanwj)

	#7846 491171f Clean up lockorder data of destroyed mutexes (sipa)

	#7853 6ef5e00 py2: Unfiddle strings into bytes explicitly (MarcoFalke)

	#7878 53adc83 [test] bctest.py: Revert faa41ee (MarcoFalke)

	#7798 cabba24 [travis] Print the commit which was evaluated (MarcoFalke)

	#7833 b1bf511 tests: Check Content-Type header returned from RPC server (laanwj)

	#7851 fa9d86f pull-tester: Don’t mute zmq ImportError (MarcoFalke)

	#7822 0e6fd5e Add listunspent() test for spendable/unspendable UTXO (jpdffonseca)

	#7912 59ad568 Tests: Fix deserialization of reject messages (sdaftuar)

	#7941 0ea3941 Fixing comment in script_test.json test case (Christewart)

	#7807 0ad1041 Fixed miner test values, gave constants for less error-prone values (instagibbs)

	#7980 88b77c7 Smartfees: Properly use ordered dict (MarcoFalke)

	#7814 77b637f Switch to py3 (MarcoFalke)

	#8030 409a8a1 Revert fatal-ness of missing python-zmq (laanwj)

	#8018 3e90fe6 Autofind rpc tests –srcdir (jonasschnelli)

	#8016 5767e80 Fix multithread CScheduler and reenable test (paveljanik)

	#7972 423ca30 pull-tester: Run rpc test in parallel (MarcoFalke)

	#8039 69b3a6d Bench: Add crypto hash benchmarks (laanwj)

	#8041 5b736dd Fix bip9-softforks blockstore issue (MarcoFalke)

	#7994 1f01443 Add op csv tests to script_tests.json (Christewart)

	#8038 e2bf830 Various minor fixes (MarcoFalke)

	#8072 1b87e5b Travis: ‘make check’ in parallel and verbose (theuni)

	#8056 8844ef1 Remove hardcoded “4 nodes” from test_framework (MarcoFalke)

	#8047 37f9a1f Test_framework: Set wait-timeout for bitcoind procs (MarcoFalke)

	#8095 6700cc9 Test framework: only cleanup on successful test runs (sdaftuar)

	#8098 06bd4f6 Test_framework: Append portseed to tmpdir (MarcoFalke)

	#8104 6ff2c8d Add timeout to sync_blocks() and sync_mempools() (sdaftuar)

	#8111 61b8684 Benchmark SipHash (sipa)

	#8107 52b803e Bench: Added base58 encoding/decoding benchmarks (yurizhykin)

	#8115 0026e0e Avoid integer division in the benchmark inner-most loop (gmaxwell)

	#8090 a2df115 Adding P2SH(p2pkh) script test case (Christewart)

	#7992 ec45cc5 Extend #7956 with one more test (TheBlueMatt)

	#8139 ae5575b Fix interrupted HTTP RPC connection workaround for Python 3.5+ (sipa)

	#8164 0f24eaf [Bitcoin-Tx] fix missing test fixtures, fix 32bit atoi issue (jonasschnelli)

	#8166 0b5279f Src/test: Do not shadow local variables (paveljanik)

	#8141 44c1b1c Continuing port of java comparison tool (mrbandrews)

	#8201 36b7400 fundrawtransaction: Fix race, assert amounts (MarcoFalke)

	#8214 ed2cd59 Mininode: fail on send_message instead of silent return (MarcoFalke)

	#8215 a072d1a Don’t use floating point in wallet tests (MarcoFalke)

	#8066 65c2058 Test_framework: Use different rpc_auth_pair for each node (MarcoFalke)

	#8216 0d41d70 Assert ‘changePosition out of bounds’ (MarcoFalke)

	#8222 961893f Enable mempool consistency checks in unit tests (sipa)

	#7751 84370d5 test_framework: python3.4 authproxy compat (laanwj)

	#7744 d8e862a test_framework: detect failure of bitcoind startup (laanwj)

	#8280 115735d Increase sync_blocks() timeouts in pruning.py (MarcoFalke)

	#8340 af9b7a9 Solve trivial merge conflict in p2p-segwit.py (MarcoFalke)

	#8067 3e4cf8f Travis: use slim generic image, and some fixups (theuni)

	#7951 5c7df70 Test_framework: Properly print exception (MarcoFalke)

	#8070 7771aa5 Remove non-determinism which is breaking net_tests #8069 (EthanHeilman)

	#8309 bb2646a Add wallet-hd test (MarcoFalke)

	#8444 cd0910b Fix p2p-feefilter.py for changed tx relay behavior (sdaftuar)

Mining

	#7507 11c7699 Remove internal miner (Leviathn)

	#7663 c87f51e Make the generate RPC call function for non-regtest (sipa)

	#7671 e2ebd25 Add generatetoaddress RPC to mine to an address (achow101)

	#7935 66ed450 Versionbits: GBT support (luke-jr)

	#7600 66db2d6 Select transactions using feerate-with-ancestors (sdaftuar)

	#8295 f5660d3 Mining-related fixups for 0.13.0 (sdaftuar)

	#7796 536b75e Add support for negative fee rates, fixes prioritizetransaction (MarcoFalke)

	#8362 86edc20 Scale legacy sigop count in CreateNewBlock (sdaftuar)

	#8489 8b0eee6 Bugfix: Use pre-BIP141 sigops until segwit activates (GBT) (luke-jr)

Documentation and miscellaneous

	#7423 69e2a40 Add example for building with constrained resources (jarret)

	#8254 c2c69ed Add OSX ZMQ requirement to QA readme (fanquake)

	#8203 377d131 Clarify documentation for running a tor node (nathaniel-mahieu)

	#7428 4b12266 Add example for listing ./configure flags (nathaniel-mahieu)

	#7847 3eae681 Add arch linux build example (mruddy)

	#7968 ff69aaf Fedora build requirements (wtogami)

	#8013 fbedc09 Fedora build requirements, add gcc-c++ and fix typo (wtogami)

	#8009 fbd8478 Fixed invalid example paths in gitian-building.md (JeremyRand)

	#8240 63fbdbc Mention Windows XP end of support in release notes (laanwj)

	#8303 5077d2c Update bips.md for CSV softfork (fanquake)

	#7789 e0b3e19 Add note about using the Qt official binary installer (paveljanik)

	#7791 e30a5b0 Change Precise to Trusty in gitian-building.md (JeremyRand)

	#7838 8bb5d3d Update gitian build guide to debian 8.4.0 (fanquake)

	#7855 b778e59 Replace precise with trusty (MarcoFalke)

	#7975 fc23fee Update bitcoin-core GitHub links (MarcoFalke)

	#8034 e3a8207 Add basic git squash workflow (fanquake)

	#7813 214ec0b Update port in tor.md (MarcoFalke)

	#8193 37c9830 Use Debian 8.5 in the gitian-build guide (fanquake)

	#8261 3685e0c Clarify help for getblockchaininfo (paveljanik)

	#7185 ea0f5a2 Note that reviewers should mention the id of the commits they reviewed (pstratem)

	#7290 c851d8d [init] Add missing help for args (MarcoFalke)

	#7281 f9fd4c2 Improve CheckInputs() comment about sig verification (petertodd)

	#7417 1e06bab Minor improvements to the release process (PRabahy)

	#7444 4cdbd42 Improve block validity/ConnectBlock() comments (petertodd)

	#7527 db2e1c0 Fix and cleanup listreceivedbyX documentation (instagibbs)

	#7541 b6e00af Clarify description of blockindex (pinheadmz)

	#7590 f06af57 Improving wording related to Boost library requirements [updated] (jonathancross)

	#7635 0fa88ef Add dependency info to test docs (elliotolds)

	#7609 3ba07bd RPM spec file project (AliceWonderMiscreations)

	#7850 229a17c Removed call to TryCreateDirectory from GetDefaultDataDir in src/util.cpp (alexreg)

	#7888 ec870e1 Prevector: fix 2 bugs in currently unreached code paths (kazcw)

	#7922 90653bc CBase58Data::SetString: cleanse the full vector (kazcw)

	#7881 c4e8390 Update release process (laanwj)

	#7952 a9c8b74 Log invalid block hash to make debugging easier (paveljanik)

	#7974 8206835 More comments on the design of AttemptToEvictConnection (gmaxwell)

	#7795 47a7cfb UpdateTip: log only one line at most per block (laanwj)

	#8110 e7e25ea Add benchmarking notes (fanquake)

	#8121 58f0c92 Update implemented BIPs list (fanquake)

	#8029 58725ba Simplify OS X build notes (fanquake)

	#8143 d46b8b5 comment nit: miners don’t vote (instagibbs)

	#8136 22e0b35 Log/report in 10% steps during VerifyDB (jonasschnelli)

	#8168 d366185 util: Add ParseUInt32 and ParseUInt64 (laanwj)

	#8178 f7b1bfc Add git and github tips and tricks to developer notes (sipa)

	#8177 67db011 developer notes: updates for C++11 (kazcw)

	#8229 8ccdac1 [Doc] Update OS X build notes for 10.11 SDK (fanquake)

	#8233 9f1807a Mention Linux ARM executables in release process and notes (laanwj)

	#7540 ff46dd4 Rename OP_NOP3 to OP_CHECKSEQUENCEVERIFY (btcdrak)

	#8289 26316ff bash-completion: Adapt for 0.12 and 0.13 (roques)

	#7453 3dc3149 Missing patches from 0.12 (MarcoFalke)

	#7113 54a550b Switch to a more efficient rolling Bloom filter (sipa)

	#7257 de9e5ea Combine common error strings for different options so translations can be shared and reused (luke-jr)

	#7304 b8f485c [contrib] Add clang-format-diff.py (MarcoFalke)

	#7378 e6f97ef devtools: replace github-merge with python version (laanwj)

	#7395 0893705 devtools: show pull and commit information in github-merge (laanwj)

	#7402 6a5932b devtools: github-merge get toplevel dir without extra whitespace (achow101)

	#7425 20a408c devtools: Fix utf-8 support in messages for github-merge (laanwj)

	#7632 409f843 Delete outdated test-patches reference (Lewuathe)

	#7662 386f438 remove unused NOBLKS_VERSION_{START,END} constants (rat4)

	#7737 aa0d2b2 devtools: make github-merge.py use py3 (laanwj)

	#7781 55db5f0 devtools: Auto-set branch to merge to in github-merge (laanwj)

	#7934 f17032f Improve rolling bloom filter performance and benchmark (sipa)

	#8004 2efe38b signal handling: fReopenDebugLog and fRequestShutdown should be type sig_atomic_t (catilac)

	#7713 f6598df Fixes for verify-commits script (petertodd)

	#8412 8360d5b libconsensus: Expose a flag for BIP112 (jtimon)

Credits

Thanks to everyone who directly contributed to this release:

	21E14

	accraze

	Adam Brown

	Alexander Regueiro

	Alex Morcos

	Alfie John

	Alice Wonder

	AlSzacrel

	Andrew Chow

	Andrés G. Aragoneses

	Bob McElrath

	BtcDrak

	calebogden

	Cédric Félizard

	Chirag Davé

	Chris Moore

	Chris Stewart

	Christian von Roques

	Chris Wheeler

	Cory Fields

	crowning-

	Daniel Cousens

	Daniel Kraft

	Denis Lukianov

	Elias Rohrer

	Elliot Olds

	Eric Shaw

	error10

	Ethan Heilman

	face

	fanquake

	Francesco ‘makevoid’ Canessa

	fsb4000

	Gavin Andresen

	gladoscc

	Gregory Maxwell

	Gregory Sanders

	instagibbs

	James O’Beirne

	Jannes Faber

	Jarret Dyrbye

	Jeremy Rand

	jloughry

	jmacwhyte

	Joao Fonseca

	Johnson Lau

	Jonas Nick

	Jonas Schnelli

	Jonathan Cross

	João Barbosa

	Jorge Timón

	Kaz Wesley

	Kefkius

	kirkalx

	Krzysztof Jurewicz

	Leviathn

	lewuathe

	Luke Dashjr

	Luv Khemani

	Marcel Krüger

	Marco Falke

	Mark Friedenbach

	Matt

	Matt Bogosian

	Matt Corallo

	Matthew English

	Matthew Zipkin

	mb300sd

	Mitchell Cash

	mrbandrews

	mruddy

	Murch

	Mustafa

	Nathaniel Mahieu

	Nicolas Dorier

	Patrick Strateman

	Paul Rabahy

	paveljanik

	Pavel Janík

	Pavel Vasin

	Pedro Branco

	Peter Todd

	Philip Kaufmann

	Pieter Wuille

	Prayag Verma

	ptschip

	Puru

	randy-waterhouse

	R E Broadley

	Rusty Russell

	Suhas Daftuar

	Suriyaa Kudo

	TheLazieR Yip

	Thomas Kerin

	Tom Harding

	Tyler Hardin

	UdjinM6

	Warren Togami

	Will Binns

	Wladimir J. van der Laan

	Yuri Zhykin

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Bitcoin version 0.6.2 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.6.2/

This is a bug-fix and code-cleanup release, with no major new features.

Please report bugs using the github issue tracker at:
https://github.com/bitcoin/bitcoin/issues

NOTABLE CHANGES

Much faster shutdowns. However, the blkindex.dat file is no longer
portable to different data directories by default. If you need a
portable blkindex.dat file then run with the new -detachdb=1 option
or the “Detach databases at shutdown” GUI preference.

Fixed https://github.com/bitcoin/bitcoin/issues/1065, a bug that
could cause long-running nodes to crash.

Mac and Windows binaries are compiled against OpenSSL 1.0.1b (Linux
binaries are dynamically linked to the version of OpenSSL on the system).

CHANGE SUMMARY

Use ‘git shortlog –no-merges v0.6.0..’ for a summary of this release.

Source codebase changes:

	Many source code cleanups and warnings fixes. Close to building with -Wall

	Locking overhaul, and several minor locking fixes

	Several source code portability fixes, e.g. FreeBSD

JSON-RPC interface changes:

	addmultisigaddress enabled for mainnet (previously only enabled for testnet)

Network protocol changes:

	protocol version 60001

	added nonce value to “ping” message (BIP 31)

	added new “pong” message (BIP 31)

Backend storage changes:

	Less redundant database flushing, especially during initial block download

	Shutdown improvements (see above)

Qt user interface:

	minor URI handling improvements

	progressbar improvements

	error handling improvements (show message box rather than console exception,
etc.)

	by popular request, make 4th bar of connection icon green

 <no title>

 Bitcoin-Qt version 0.8.2 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.2/

This is a maintenance release that fixes many bugs and includes
a few small new features.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.2 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.2 Release notes

Fee Policy changes

The default fee for low-priority transactions is lowered from 0.0005 BTC
(for each 1,000 bytes in the transaction; an average transaction is
about 500 bytes) to 0.0001 BTC.

Payments (transaction outputs) of 0.543 times the minimum relay fee
(0.00005430 BTC) are now considered ‘non-standard’, because storing them
costs the network more than they are worth and spending them will usually
cost their owner more in transaction fees than they are worth.

Non-standard transactions are not relayed across the network, are not included
in blocks by most miners, and will not show up in your wallet until they are
included in a block.

The default fee policy can be overridden using the -mintxfee and -minrelaytxfee
command-line options, but note that we intend to replace the hard-coded fees
with code that automatically calculates and suggests appropriate fees in the
0.9 release and note that if you set a fee policy significantly different from
the rest of the network your transactions may never confirm.

Bitcoin-Qt changes

	New icon and splash screen

	Improve reporting of synchronization process

	Remove hardcoded fee recommendations

	Improve metadata of executable on MacOSX and Windows

	Move export button to individual tabs instead of toolbar

	Add “send coins” command to context menu in address book

	Add “copy txid” command to copy transaction IDs from transaction overview

	Save & restore window size and position when showing & hiding window

	New translations: Arabic (ar), Bosnian (bs), Catalan (ca), Welsh (cy),
Esperanto (eo), Interlingua (la), Latvian (lv) and many improvements
to current translations

MacOSX:

	OSX support for click-to-pay (bitcoin:) links

	Fix GUI disappearing problem on MacOSX (issue #1522)

Linux/Unix:

	Copy addresses to middle-mouse-button clipboard

Command-line options

	-walletnotify will call a command on receiving transactions that affect the wallet.

	-alertnotify will call a command on receiving an alert from the network.

	-par now takes a negative number, to leave a certain amount of cores free.

JSON-RPC API changes

	fixed a getblocktemplate bug that caused excessive CPU creating blocks.

	listunspent now lists account and address information.

	getinfo now also returns the time adjustment estimated from your peers.

	getpeerinfo now returns bytessent, bytesrecv and syncnode.

	gettxoutsetinfo returns statistics about the unspent transaction output database.

	gettxout returns information about a specific unspent transaction output.

Networking changes

	Significant changes to the networking code, reducing latency and memory consumption.

	Avoid initial block download stalling.

	Remove IRC seeding support.

	Performance tweaks.

	Added testnet DNS seeds.

Wallet compatibility/rescuing

	Cases where wallets cannot be opened in another version/installation should be reduced.

	-salvagewallet now works for encrypted wallets.

Known Bugs

	Entering the ‘getblocktemplate’ or ‘getwork’ RPC commands into the Bitcoin-Qt debug
console will cause Bitcoin-Qt to crash. Run Bitcoin-Qt with the -server command-line
option to workaround.

Thanks to everybody who contributed to the 0.8.2 release!

APerson241
Andrew Poelstra
Calvin Owens
Chuck LeDuc Díaz
Colin Dean
David Griffith
David Serrano
Eric Lombrozo
Gavin Andresen
Gregory Maxwell
Jeff Garzik
Jonas Schnelli
Larry Gilbert
Luke Dashjr
Matt Corallo
Michael Ford
Mike Hearn
Patrick Brown
Peter Todd
Philip Kaufmann
Pieter Wuille
Richard Schwab
Roman Mindalev
Scott Howard
Tariq Bashir
Warren Togami
Wladimir J. van der Laan
freewil
gladoscc
kjj2
mb300sd
super3

 <no title>

 Binaries for Bitcoin version 0.3.21 are available at:
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.21/

Changes and new features from the 0.3.20 release include:

	Universal Plug and Play support. Enable automatic opening of a port for incoming connections by running bitcoin or bitcoind with the - -upnp=1 command line switch or using the Options dialog box.

	Support for full-precision bitcoin amounts. You can now send, and bitcoin will display, bitcoin amounts smaller than 0.01. However, sending fewer than 0.01 bitcoins still requires a 0.01 bitcoin fee (so you can send 1.0001 bitcoins without a fee, but you will be asked to pay a fee if you try to send 0.0001).

	A new method of finding bitcoin nodes to connect with, via DNS A records. Use the -dnsseed option to enable.

For developers, changes to bitcoin’s remote-procedure-call API:

	New rpc command “sendmany” to send bitcoins to more than one address in a single transaction.

	Several bug fixes, including a serious intermittent bug that would sometimes cause bitcoind to stop accepting rpc requests.

	-logtimestamps option, to add a timestamp to each line in debug.log.

	Immature blocks (newly generated, under 120 confirmations) are now shown in listtransactions.

 <no title>

 Bitcoin version 0.4.1 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.4.1/

This is a bugfix only release based on 0.4.0.

Please report bugs by replying to this forum thread.

MAJOR BUG FIX (CVE-2011-4447)

The wallet encryption feature introduced in Bitcoin version 0.4.0 did not sufficiently secure the private keys. An attacker who
managed to get a copy of your encrypted wallet.dat file might be able to recover some or all of the unencrypted keys and steal the
associated coins.

If you have a previously encrypted wallet.dat, the first time you run wxbitcoin or bitcoind the wallet will be rewritten, Bitcoin will
shut down, and you will be prompted to restart it to run with the new, properly encrypted file.

If you had a previously encrypted wallet.dat that might have been copied or stolen (for example, you backed it up to a public
location) you should send all of your bitcoins to yourself using a new bitcoin address and stop using any previously generated addresses.

Wallets encrypted with this version of Bitcoin are written properly.

Technical note: the encrypted wallet’s ‘keypool’ will be regenerated the first time you request a new bitcoin address; to be certain that the
new private keys are properly backed up you should:

	Run Bitcoin and let it rewrite the wallet.dat file

	Run it again, then ask it for a new bitcoin address.
wxBitcoin: new address visible on main window
bitcoind: run the ‘walletpassphrase’ RPC command to unlock the wallet, then run the ‘getnewaddress’ RPC command.

	If your encrypted wallet.dat may have been copied or stolen, send all of your bitcoins to the new bitcoin address.

	Shut down Bitcoin, then backup the wallet.dat file.
IMPORTANT: be sure to request a new bitcoin address before backing up, so that the ‘keypool’ is regenerated and backed up.

“Security in depth” is always a good idea, so choosing a secure location for the backup and/or encrypting the backup before uploading it is recommended. And as in previous releases, if your machine is infected by malware there are several ways an attacker might steal your bitcoins.

Thanks to Alan Reiner (etotheipi) for finding and reporting this bug.

 Upgrading and downgrading

 Bitcoin Core version 0.10.4 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.10.4/

This is a new minor version release, bringing bug fixes, the BIP65
(CLTV) consensus change, and relay policy preparation for BIP113. It is
recommended to upgrade to this version as soon as possible.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility. There are no
known problems when downgrading from 0.11.x to 0.10.x.

Notable changes since 0.10.3

BIP65 soft fork to enforce OP_CHECKLOCKTIMEVERIFY opcode

This release includes several changes related to the BIP65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki] soft fork
which redefines the existing OP_NOP2 opcode as OP_CHECKLOCKTIMEVERIFY
(CLTV) so that a transaction output can be made unspendable until a
specified point in the future.

	This release will only relay and mine transactions spending a CLTV
output if they comply with the BIP65 rules as provided in code.

	This release will produce version 4 blocks by default. Please see the
notice to miners below.

	Once 951 out of a sequence of 1,001 blocks on the local node’s best block
chain contain version 4 (or higher) blocks, this release will no
longer accept new version 3 blocks and it will only accept version 4
blocks if they comply with the BIP65 rules for CLTV.

For more information about the soft-forking change, please see
https://github.com/bitcoin/bitcoin/pull/6351

Graphs showing the progress towards block version 4 adoption may be
found at the URLs below:

	Block versions over the last 50,000 blocks as progress towards BIP65
consensus enforcement: http://bitcoin.sipa.be/ver-50k.png

	Block versions over the last 2,000 blocks showing the days to the
earliest possible BIP65 consensus-enforced block: http://bitcoin.sipa.be/ver-2k.png

Notice to miners: Bitcoin Core’s block templates are now for
version 4 blocks only, and any mining software relying on its
getblocktemplate must be updated in parallel to use libblkmaker either
version FIXME or any version from FIXME onward.

	If you are solo mining, this will affect you the moment you upgrade
Bitcoin Core, which must be done prior to BIP65 achieving its 951/1001
status.

	If you are mining with the stratum mining protocol: this does not
affect you.

	If you are mining with the getblocktemplate protocol to a pool: this
will affect you at the pool operator’s discretion, which must be no
later than BIP65 achieving its 951/1001 status.

Windows bug fix for corrupted UTXO database on unclean shutdowns

Several Windows users reported that they often need to reindex the
entire blockchain after an unclean shutdown of Bitcoin Core on Windows
(or an unclean shutdown of Windows itself). Although unclean shutdowns
remain unsafe, this release no longer relies on memory-mapped files for
the UTXO database, which significantly reduced the frequency of unclean
shutdowns leading to required reindexes during testing.

For more information, see: https://github.com/bitcoin/bitcoin/pull/6917

Other fixes for database corruption on Windows are expected in the
next major release.

0.10.4 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

	#6953 8b3311f alias -h for –help

	#6953 97546fc Change URLs to https in debian/control

	#6953 38671bf Update debian/changelog and slight tweak to debian/control

	#6953 256321e Correct spelling mistakes in doc folder

	#6953 eae0350 Clarification of unit test build instructions

	#6953 90897ab Update bluematt-key, the old one is long-since revoked

	#6953 a2f2fb6 build: disable -Wself-assign

	#6953 cf67d8b Bugfix: Allow mining on top of old tip blocks for testnet (fixes testnet-in-a-box use case)

	#6953 b3964e3 Drop “with minimal dependencies” from description

	#6953 43c2789 Split bitcoin-tx into its own package

	#6953 dfe0d4d Include bitcoin-tx binary on Debian/Ubuntu

	#6953 612efe8 [Qt] Raise debug window when requested

	#6953 3ad96bd Fix locking in GetTransaction

	#6953 9c81005 Fix spelling of Qt

	#6946 94b67e5 Update LevelDB

	#6706 5dc72f8 CLTV: Add more tests to improve coverage

	#6706 6a1343b Add RPC tests for the CHECKLOCKTIMEVERIFY (BIP65) soft-fork

	#6706 4137248 Add CHECKLOCKTIMEVERIFY (BIP65) soft-fork logic

	#6706 0e01d0f Enable CHECKLOCKTIMEVERIFY as a standard script verify flag

	#6706 6d01325 Replace NOP2 with CHECKLOCKTIMEVERIFY (BIP65)

	#6706 750d54f Move LOCKTIME_THRESHOLD to src/script/script.h

	#6706 6897468 Make CScriptNum() take nMaxNumSize as an argument

	#6867 5297194 Set TCP_NODELAY on P2P sockets

	#6836 fb818b6 Bring historical release notes up to date

	#6852 0b3fd07 build: make sure OpenSSL heeds noexecstack

Credits

Thanks to everyone who directly contributed to this release:

	Alex Morcos

	Daniel Cousens

	Diego Viola

	Eric Lombrozo

	Esteban Ordano

	Gregory Maxwell

	Luke Dashjr

	MarcoFalke

	Matt Corallo

	Micha

	Mitchell Cash

	Peter Todd

	Pieter Wuille

	Wladimir J. van der Laan

	Zak Wilcox

And those who contributed additional code review and/or security research.

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 Upgrading and downgrading

 Bitcoin Core version 0.10.2 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.10.2/

This is a new minor version release, bringing minor bug fixes and translation
updates. It is recommended to upgrade to this version.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

This fixes a serious problem on Windows with data directories that have non-ASCII
characters (https://github.com/bitcoin/bitcoin/issues/6078).

For other platforms there are no notable changes.

For the notable changes in 0.10, refer to the release notes
at https://github.com/bitcoin/bitcoin/blob/v0.10.0/doc/release-notes.md

0.10.2 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

Wallet:

	824c011 fix boost::get usage with boost 1.58

Miscellaneous:

	da65606 Avoid crash on start in TestBlockValidity with gen=1.

	424ae66 don’t imbue boost::filesystem::path with locale “C” on windows (fixes #6078)

Credits

Thanks to everyone who directly contributed to this release:

	Cory Fields

	Gregory Maxwell

	Jonas Schnelli

	Wladimir J. van der Laan

And all those who contributed additional code review and/or security research:

	dexX7

	Pieter Wuille

	vayvanne

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 Upgrading and downgrading

 Bitcoin Core version 0.11.0 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.11.0/

This is a new major version release, bringing both new features and
bug fixes.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility. There are no
known problems when downgrading from 0.11.x to 0.10.x.

Important information

Transaction flooding

At the time of this release, the P2P network is being flooded with low-fee
transactions. This causes a ballooning of the mempool size.

If this growth of the mempool causes problematic memory use on your node, it is
possible to change a few configuration options to work around this. The growth
of the mempool can be monitored with the RPC command getmempoolinfo.

One is to increase the minimum transaction relay fee minrelaytxfee, which
defaults to 0.00001. This will cause transactions with fewer BTC/kB fee to be
rejected, and thus fewer transactions entering the mempool.

The other is to restrict the relaying of free transactions with
limitfreerelay. This option sets the number of kB/minute at which
free transactions (with enough priority) will be accepted. It defaults to 15.
Reducing this number reduces the speed at which the mempool can grow due
to free transactions.

For example, add the following to bitcoin.conf:

minrelaytxfee=0.00005
limitfreerelay=5

More robust solutions are being worked on for a follow-up release.

Notable changes

Block file pruning

This release supports running a fully validating node without maintaining a copy
of the raw block and undo data on disk. To recap, there are four types of data
related to the blockchain in the bitcoin system: the raw blocks as received over
the network (blk???.dat), the undo data (rev???.dat), the block index and the
UTXO set (both LevelDB databases). The databases are built from the raw data.

Block pruning allows Bitcoin Core to delete the raw block and undo data once
it’s been validated and used to build the databases. At that point, the raw data
is used only to relay blocks to other nodes, to handle reorganizations, to look
up old transactions (if -txindex is enabled or via the RPC/REST interfaces), or
for rescanning the wallet. The block index continues to hold the metadata about
all blocks in the blockchain.

The user specifies how much space to allot for block & undo files. The minimum
allowed is 550MB. Note that this is in addition to whatever is required for the
block index and UTXO databases. The minimum was chosen so that Bitcoin Core will
be able to maintain at least 288 blocks on disk (two days worth of blocks at 10
minutes per block). In rare instances it is possible that the amount of space
used will exceed the pruning target in order to keep the required last 288
blocks on disk.

Block pruning works during initial sync in the same way as during steady state,
by deleting block files “as you go” whenever disk space is allocated. Thus, if
the user specifies 550MB, once that level is reached the program will begin
deleting the oldest block and undo files, while continuing to download the
blockchain.

For now, block pruning disables block relay. In the future, nodes with block
pruning will at a minimum relay “new” blocks, meaning blocks that extend their
active chain.

Block pruning is currently incompatible with running a wallet due to the fact
that block data is used for rescanning the wallet and importing keys or
addresses (which require a rescan.) However, running the wallet with block
pruning will be supported in the near future, subject to those limitations.

Block pruning is also incompatible with -txindex and will automatically disable
it.

Once you have pruned blocks, going back to unpruned state requires
re-downloading the entire blockchain. To do this, re-start the node with
-reindex. Note also that any problem that would cause a user to reindex (e.g.,
disk corruption) will cause a pruned node to redownload the entire blockchain.
Finally, note that when a pruned node reindexes, it will delete any blk???.dat
and rev???.dat files in the data directory prior to restarting the download.

To enable block pruning on the command line:

	-prune=N: where N is the number of MB to allot for raw block & undo data.

Modified RPC calls:

	getblockchaininfo now includes whether we are in pruned mode or not.

	getblock will check if the block’s data has been pruned and if so, return an
error.

	getrawtransaction will no longer be able to locate a transaction that has a
UTXO but where its block file has been pruned.

Pruning is disabled by default.

Big endian support

Experimental support for big-endian CPU architectures was added in this
release. All little-endian specific code was replaced with endian-neutral
constructs. This has been tested on at least MIPS and PPC hosts. The build
system will automatically detect the endianness of the target.

Memory usage optimization

There have been many changes in this release to reduce the default memory usage
of a node, among which:

	Accurate UTXO cache size accounting (#6102); this makes the option -dbcache
precise where this grossly underestimated memory usage before

	Reduce size of per-peer data structure (#6064 and others); this increases the
number of connections that can be supported with the same amount of memory

	Reduce the number of threads (#5964, #5679); lowers the amount of (esp.
virtual) memory needed

Fee estimation changes

This release improves the algorithm used for fee estimation. Previously, -1
was returned when there was insufficient data to give an estimate. Now, -1
will also be returned when there is no fee or priority high enough for the
desired confirmation target. In those cases, it can help to ask for an estimate
for a higher target number of blocks. It is not uncommon for there to be no
fee or priority high enough to be reliably (85%) included in the next block and
for this reason, the default for -txconfirmtarget=n has changed from 1 to 2.

Privacy: Disable wallet transaction broadcast

This release adds an option -walletbroadcast=0 to prevent automatic
transaction broadcast and rebroadcast (#5951). This option allows separating
transaction submission from the node functionality.

Making use of this, third-party scripts can be written to take care of
transaction (re)broadcast:

	Send the transaction as normal, either through RPC or the GUI

	Retrieve the transaction data through RPC using gettransaction (NOT
getrawtransaction). The hex field of the result will contain the raw
hexadecimal representation of the transaction

	The transaction can then be broadcasted through arbitrary mechanisms
supported by the script

One such application is selective Tor usage, where the node runs on the normal
internet but transactions are broadcasted over Tor.

For an example script see bitcoin-submittx [https://github.com/laanwj/bitcoin-submittx].

Privacy: Stream isolation for Tor

This release adds functionality to create a new circuit for every peer
connection, when the software is used with Tor. The new option,
-proxyrandomize, is on by default.

When enabled, every outgoing connection will (potentially) go through a
different exit node. That significantly reduces the chance to get unlucky and
pick a single exit node that is either malicious, or widely banned from the P2P
network. This improves connection reliability as well as privacy, especially
for the initial connections.

Important note: If a non-Tor SOCKS5 proxy is configured that supports
authentication, but doesn’t require it, this change may cause that proxy to reject
connections. A user and password is sent where they weren’t before. This setup
is exceedingly rare, but in this case -proxyrandomize=0 can be passed to
disable the behavior.

0.11.0 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

RPC and REST

	#5461 5f7279a signrawtransaction: validate private key

	#5444 103f66b Add /rest/headers//.

 Upgrading and downgrading

 Bitcoin Core version 0.11.1 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.11.1/

This is a new minor version release, bringing security fixes. It is recommended
to upgrade to this version as soon as possible.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility. There are no
known problems when downgrading from 0.11.x to 0.10.x.

Notable changes

Fix buffer overflow in bundled upnp

Bundled miniupnpc was updated to 1.9.20151008. This fixes a buffer overflow in
the XML parser during initial network discovery.

Details can be found here: http://talosintel.com/reports/TALOS-2015-0035/

This applies to the distributed executables only, not when building from source or
using distribution provided packages.

Additionally, upnp has been disabled by default. This may result in a lower
number of reachable nodes on IPv4, however this prevents future libupnpc
vulnerabilities from being a structural risk to the network
(see https://github.com/bitcoin/bitcoin/pull/6795).

Test for LowS signatures before relaying

Make the node require the canonical ‘low-s’ encoding for ECDSA signatures when
relaying or mining. This removes a nuisance malleability vector.

Consensus behavior is unchanged.

If widely deployed this change would eliminate the last remaining known vector
for nuisance malleability on SIGHASH_ALL P2PKH transactions. On the down-side
it will block most transactions made by sufficiently out of date software.

Unlike the other avenues to change txids on transactions this
one was randomly violated by all deployed bitcoin software prior to
its discovery. So, while other malleability vectors where made
non-standard as soon as they were discovered, this one has remained
permitted. Even BIP62 did not propose applying this rule to
old version transactions, but conforming implementations have become
much more common since BIP62 was initially written.

Bitcoin Core has produced compatible signatures since a28fb70e in
September 2013, but this didn’t make it into a release until 0.9
in March 2014; Bitcoinj has done so for a similar span of time.
Bitcoinjs and electrum have been more recently updated.

This does not replace the need for BIP62 or similar, as miners can
still cooperate to break transactions. Nor does it replace the
need for wallet software to handle malleability sanely[1]. This
only eliminates the cheap and irritating DOS attack.

[1] On the Malleability of Bitcoin Transactions
Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, Łukasz Mazurek
http://fc15.ifca.ai/preproceedings/bitcoin/paper_9.pdf

Minimum relay fee default increase

The default for the -minrelaytxfee setting has been increased from 0.00001
to 0.00005.

This is necessitated by the current transaction flooding, causing
outrageous memory usage on nodes due to the mempool ballooning. This is a
temporary measure, bridging the time until a dynamic method for determining
this fee is merged (which will be in 0.12).

(see https://github.com/bitcoin/bitcoin/pull/6793, as well as the 0.11
release notes, in which this value was suggested)

0.11.1 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

	#6438 2531438 openssl: avoid config file load/race

	#6439 980f820 Updated URL location of netinstall for Debian

	#6384 8e5a969 qt: Force TLS1.0+ for SSL connections

	#6471 92401c2 Depends: bump to qt 5.5

	#6224 93b606a Be even stricter in processing unrequested blocks

	#6571 100ac4e libbitcoinconsensus: avoid a crash in multi-threaded environments

	#6545 649f5d9 Do not store more than 200 timedata samples.

	#6694 834e299 [QT] fix thin space word wrap line break issue

	#6703 1cd7952 Backport bugfixes to 0.11

	#6750 5ed8d0b Recent rejects backport to v0.11

	#6769 71cc9d9 Test LowS in standardness, removes nuisance malleability vector.

	#6789 b4ad73f Update miniupnpc to 1.9.20151008

	#6785 b4dc33e Backport to v0.11: In (strCommand == “tx”), return if AlreadyHave()

	#6412 0095b9a Test whether created sockets are select()able

	#6795 4dbcec0 net: Disable upnp by default

	#6793 e7bcc4a Bump minrelaytxfee default

Credits

Thanks to everyone who directly contributed to this release:

	Adam Weiss

	Alex Morcos

	Casey Rodarmor

	Cory Fields

	fanquake

	Gregory Maxwell

	Jonas Schnelli

	J Ross Nicoll

	Luke Dashjr

	Pavel Janík

	Pavel Vasin

	Peter Todd

	Pieter Wuille

	randy-waterhouse

	Ross Nicoll

	Suhas Daftuar

	tailsjoin

	฿tcDrak

	Tom Harding

	Veres Lajos

	Wladimir J. van der Laan

And those who contributed additional code review and/or security research:

	timothy on IRC for reporting the issue

	Vulnerability in miniupnp discovered by Aleksandar Nikolic of Cisco Talos

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 How to Upgrade

 Bitcoin-Qt/bitcoind version 0.8.1 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.1/

This is a maintenance release that adds a new network rule to avoid
a chain-forking incompatibility with versions 0.7.2 and earlier.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.1 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

 <no title>

 Bitcoin v0.3.24 is now available for download at
https://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.3.24/

This is another bug fix release. We had hoped to have wallet encryption ready for release, but more urgent fixes for existing clients were needed – most notably block download problems were getting severe. Wallet encryption is ready for testing at https://github.com/bitcoin/bitcoin/pull/352 for the git-savvy, and hopefully will follow shortly in the next release, v0.4.

Notable fixes in v0.3.24, and the main reasons for this release:

F1) Block downloads were failing or taking unreasonable amounts of time to complete, because the increased size of the block chain was bumping up against some earlier buffer-size DoS limits.

F2) Fix crash caused by loss/lack of network connection.

Notable changes in v0.3.24:

C1) DNS seeding enabled by default.

C2) UPNP enabled by default in the GUI client. The percentage of bitcoin clients that accept incoming connections is quite small, and that is a problem. This should help. bitcoind, and unofficial builds, are unchanged (though we encourage use of “-upnp” to help the network!)

C3) Initial unit testing framework. Bitcoin sorely needs automated tests, and this is a beginning. Contributions welcome.

C4) Internal wallet code cleanup. While invisible to an end user, this change provides the basis for v0.4’s wallet encryption.

 <no title>

 The maxsendbuffer bug (0.3.20.1 clients not being able to download the block chain from other 0.3.20.1 clients) was only going to get
worse as people upgraded, so I cherry-picked the bug fix and created a minor release yesterday.

The Amazon Machine Images I used to do the builds are available:

ami-38a05251 Bitcoin-v0.3.20.2 Mingw (Windows; Administrator password ‘bitcoin development’)
ami-30a05259 Bitcoin_0.3.20.2 Linux32
ami-8abc4ee3 Bitcoin_0.3.20.2 Linux64

(mac build will be done soon)

If you have already downloaded version 0.3.20.1, please either add this to your bitcoin.conf file:

maxsendbuffer=10000
maxreceivebuffer=10000

... or download the new version.

 <no title>

 bitcoind version 0.4.6 is now available for download at:
Windows: installer | zip (sig)
Source: tar.gz
bitcoind and Bitcoin-Qt version 0.6.0.7 are also tagged in git, but it is recommended to upgrade to 0.6.1.

These are bugfix-only releases.

Please report bugs by replying to this forum thread. Note that the 0.4.x wxBitcoin GUI client is no longer maintained nor supported. If someone would like to step up to maintain this, they should contact Luke-Jr.

BUG FIXES

Version 0.6.0 allowed importing invalid “private keys”, which would be unspendable; 0.6.0.7 will now verify the private key is valid, and refuse to import an invalid one
Verify status of encrypt/decrypt calls to detect failed padding
Check blocks for duplicate transactions earlier. Fixes #1167
Upgrade Windows builds to OpenSSL 1.0.1b
Set label when selecting an address that already has a label. Fixes #1080 (Bitcoin-Qt)
JSON-RPC listtransactions’s from/count handling is now fixed
Optimize and fix multithreaded access, when checking whether we already know about transactions
Fix potential networking deadlock
Proper support for Growl 1.3 notifications
Display an error, rather than crashing, if encoding a QR Code failed (0.6.0.7)
Don’t erroneously set “Display addresses” for users who haven’t explicitly enabled it (Bitcoin-Qt)
Some non-ASCII input in JSON-RPC expecting hexadecimal may have been misinterpreted rather than rejected
Missing error condition checking added
Do not show green tick unless all known blocks are downloaded. Fixes #921 (Bitcoin-Qt)
Increase time ago of last block for “up to date” status from 30 to 90 minutes
Show a message box when runaway exception happens (Bitcoin-Qt)
Use a messagebox to display the error when -server is provided without providing a rpc password
Show error message instead of exception crash when unable to bind RPC port (Bitcoin-Qt)
Correct sign message bitcoin address tooltip. Fixes #1050 (Bitcoin-Qt)
Removed “(no label)” from QR Code dialog titlebar if we have no label (0.6.0.7)
Removed an ugly line break in tooltip for mature transactions (0.6.0.7)
Add missing tooltip and key shortcut in settings dialog (part of #1088) (Bitcoin-Qt)
Work around issue in boost::program_options that prevents from compiling in clang
Fixed bugs occurring only on platforms with unsigned characters (such as ARM).
Rename make_windows_icon.py to .sh as it is a shell script. Fixes #1099 (Bitcoin-Qt)
Various trivial internal corrections to types used for counting/size loops and warnings

 Upgrading and downgrading

 Bitcoin Core version 0.10.3 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.10.3/

This is a new minor version release, bringing security fixes and translation
updates. It is recommended to upgrade to this version as soon as possible.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

Fix buffer overflow in bundled upnp

Bundled miniupnpc was updated to 1.9.20151008. This fixes a buffer overflow in
the XML parser during initial network discovery.

Details can be found here: http://talosintel.com/reports/TALOS-2015-0035/

This applies to the distributed executables only, not when building from source or
using distribution provided packages.

Additionally, upnp has been disabled by default. This may result in a lower
number of reachable nodes on IPv4, however this prevents future libupnpc
vulnerabilities from being a structural risk to the network
(see https://github.com/bitcoin/bitcoin/pull/6795).

Test for LowS signatures before relaying

Make the node require the canonical ‘low-s’ encoding for ECDSA signatures when
relaying or mining. This removes a nuisance malleability vector.

Consensus behavior is unchanged.

If widely deployed this change would eliminate the last remaining known vector
for nuisance malleability on SIGHASH_ALL P2PKH transactions. On the down-side
it will block most transactions made by sufficiently out of date software.

Unlike the other avenues to change txids on transactions this
one was randomly violated by all deployed bitcoin software prior to
its discovery. So, while other malleability vectors where made
non-standard as soon as they were discovered, this one has remained
permitted. Even BIP62 did not propose applying this rule to
old version transactions, but conforming implementations have become
much more common since BIP62 was initially written.

Bitcoin Core has produced compatible signatures since a28fb70e in
September 2013, but this didn’t make it into a release until 0.9
in March 2014; Bitcoinj has done so for a similar span of time.
Bitcoinjs and electrum have been more recently updated.

This does not replace the need for BIP62 or similar, as miners can
still cooperate to break transactions. Nor does it replace the
need for wallet software to handle malleability sanely[1]. This
only eliminates the cheap and irritating DOS attack.

[1] On the Malleability of Bitcoin Transactions
Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, Łukasz Mazurek
http://fc15.ifca.ai/preproceedings/bitcoin/paper_9.pdf

Minimum relay fee default increase

The default for the -minrelaytxfee setting has been increased from 0.00001
to 0.00005.

This is necessitated by the current transaction flooding, causing
outrageous memory usage on nodes due to the mempool ballooning. This is a
temporary measure, bridging the time until a dynamic method for determining
this fee is merged (which will be in 0.12).

(see https://github.com/bitcoin/bitcoin/pull/6793, as well as the 0.11.0
release notes, in which this value was suggested)

0.10.3 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

	#6186 e4a7d51 Fix two problems in CSubnet parsing

	#6153 ebd7d8d Parameter interaction: disable upnp if -proxy set

	#6203 ecc96f5 Remove P2SH coinbase flag, no longer interesting

	#6226 181771b json: fail read_string if string contains trailing garbage

	#6244 09334e0 configure: Detect (and reject) LibreSSL

	#6276 0fd8464 Fix getbalance * 0

	#6274 be64204 Add option -alerts to opt out of alert system

	#6319 3f55638 doc: update mailing list address

	#6438 7e66e9c openssl: avoid config file load/race

	#6439 255eced Updated URL location of netinstall for Debian

	#6412 0739e6e Test whether created sockets are select()able

	#6694 f696ea1 [QT] fix thin space word wrap line brake issue

	#6704 743cc9e Backport bugfixes to 0.10

	#6769 1cea6b0 Test LowS in standardness, removes nuisance malleability vector.

	#6789 093d7b5 Update miniupnpc to 1.9.20151008

	#6795 f2778e0 net: Disable upnp by default

	#6797 91ef4d9 Do not store more than 200 timedata samples

	#6793 842c48d Bump minrelaytxfee default

Credits

Thanks to everyone who directly contributed to this release:

	Adam Weiss

	Alex Morcos

	Casey Rodarmor

	Cory Fields

	fanquake

	Gregory Maxwell

	Jonas Schnelli

	J Ross Nicoll

	Luke Dashjr

	Pavel Vasin

	Pieter Wuille

	randy-waterhouse

	฿tcDrak

	Tom Harding

	Veres Lajos

	Wladimir J. van der Laan

And all those who contributed additional code review and/or security research:

	timothy on IRC for reporting the issue

	Vulnerability in miniupnp discovered by Aleksandar Nikolic of Cisco Talos

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 How to Upgrade

 Bitcoin-Qt version 0.8.6 final is now available from:

http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.6/

This is a maintenance release to fix a critical bug; we urge all users to upgrade.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you already downloaded 0.8.6rc1 you do not need to re-download. This release is exactly the same.

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.6 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.6 Release notes

	Default block size increase for miners.
(see https://gist.github.com/gavinandresen/7670433#086-accept-into-block)

	Remove the all-outputs-must-be-greater-than-CENT-to-qualify-as-free rule for relaying
(see https://gist.github.com/gavinandresen/7670433#086-relaying)

	Lower maximum size for free transaction creation
(see https://gist.github.com/gavinandresen/7670433#086-wallet)

	OSX block chain database corruption fixes
	Update leveldb to 1.13

	Use fcntl with F_FULLSYNC instead of fsync on OSX

	Use native Darwin memory barriers

	Replace use of mmap in leveldb for improved reliability (only on OSX)

	Fix nodes forwarding transactions with empty vins and getting banned

	Network code performance and robustness improvements

	Additional debug.log logging for diagnosis of network problems, log timestamps by default

	Fix Bitcoin-Qt startup crash when clicking dock icon on OSX

	Fix memory leaks in CKey::SetCompactSignature() and Key::SignCompact()

	Fix rare GUI crash on send

	Various small GUI, documentation and build fixes

Warning

	There have been frequent reports of users running out of virtual memory on 32-bit systems
during the initial sync.
Hence it is recommended to use a 64-bit executable if possible.
A 64-bit executable for Windows is planned for 0.9.

Note: Gavin Andresen’s GPG signing key for SHA256SUMS.asc has been changed from key id 1FC730C1 to sub key 7BF6E212 (see https://github.com/bitcoin/bitcoin.org/pull/279).

 <no title>

 Bitcoin version 0.5.4 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.4/
NOTE: 0.5.4rc3 is being renamed to 0.5.4 final with no changes.

This is a bugfix-only release in the 0.5.x series, plus a few protocol updates.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Stable source code is hosted at Gitorious:
http://gitorious.org/bitcoin/bitcoind-stable/archive-tarball/v0.5.4#.tar.gz

PROTOCOL UPDATES

BIP 16: Special-case “pay to script hash” logic to enable minimal validation of new transactions.
Support for validating message signatures produced with compressed public keys.

BUG FIXES

Build with thread-safe MingW libraries for Windows, fixing a dangerous memory corruption scenario when exceptions are thrown.
Fix broken testnet mining.
Stop excess inventory relay during initial block download.
When disconnecting a node, clear the received buffer so that we do not process any already received messages.
Yet another attempt at implementing “minimize to tray” that works on all operating systems.
Fix Bitcoin-Qt notifications under Growl 1.3.
Increase required age of Bitcoin-Qt’s “not up to date” status from 30 to 90 minutes.
Implemented missing verifications that led to crash on entering some wrong passphrases for encrypted wallets.
Fix default filename suffixes in GNOME save dialog.
Make the “Send coins” tab use the configured unit type, even on the first attempt.
Print detailed wallet loading errors to debug.log when it is corrupt.
Allocate exactly the amount of space needed for signing transactions, instead of a fixed 10k buffer.
Workaround for improbable memory access violation.
Check wallet’s minimum version before trying to load it.
Remove wxBitcoin properly when installing Bitcoin-Qt over it. (Windows)
Detail reorganization information better in debug log.
Use a messagebox to display the error when -server is provided without configuring a RPC password.
Testing suite build now honours provided CXXFLAGS.
Removed an extraneous line-break in mature transaction tooltips.
Fix some grammatical errors in translation process documentation.

 <no title>

 Never released.

 Compatibility

 Bitcoin Core version 0.13.1 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.13.1/

This is a new minor version release, including activation parameters for the
segwit softfork, various bugfixes and performance improvements, as well as
updated translations.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

To receive security and update notifications, please subscribe to:

https://bitcoincore.org/en/list/announcements/join/

Compatibility

Microsoft ended support for Windows XP on April 8th, 2014 [https://www.microsoft.com/en-us/WindowsForBusiness/end-of-xp-support],
an OS initially released in 2001. This means that not even critical security
updates will be released anymore. Without security updates, using a bitcoin
wallet on a XP machine is irresponsible at least.

In addition to that, with 0.12.x there have been varied reports of Bitcoin Core
randomly crashing on Windows XP. It is not clear [https://github.com/bitcoin/bitcoin/issues/7681#issuecomment-217439891]
what the source of these crashes is, but it is likely that upstream
libraries such as Qt are no longer being tested on XP.

We do not have time nor resources to provide support for an OS that is
end-of-life. From 0.13.0 on, Windows XP is no longer supported. Users are
suggested to upgrade to a newer version of Windows, or install an alternative OS
that is supported.

No attempt is made to prevent installing or running the software on Windows XP,
you can still do so at your own risk, but do not expect it to work: do not
report issues about Windows XP to the issue tracker.

From 0.13.1 onwards OS X 10.7 is no longer supported. 0.13.0 was intended to work on 10.7+,
but severe issues with the libc++ version on 10.7.x keep it from running reliably.
0.13.1 now requires 10.8+, and will communicate that to 10.7 users, rather than crashing unexpectedly.

Notable changes

Segregated witness soft fork

Segregated witness (segwit) is a soft fork that, if activated, will
allow transaction-producing software to separate (segregate) transaction
signatures (witnesses) from the part of the data in a transaction that is
covered by the txid. This provides several immediate benefits:

	Elimination of unwanted transaction malleability: Segregating the witness
allows both existing and upgraded software to calculate the transaction
identifier (txid) of transactions without referencing the witness, which can
sometimes be changed by third-parties (such as miners) or by co-signers in a
multisig spend. This solves all known cases of unwanted transaction
malleability, which is a problem that makes programming Bitcoin wallet
software more difficult and which seriously complicates the design of smart
contracts for Bitcoin.

	Capacity increase: Segwit transactions contain new fields that are not
part of the data currently used to calculate the size of a block, which
allows a block containing segwit transactions to hold more data than allowed
by the current maximum block size. Estimates based on the transactions
currently found in blocks indicate that if all wallets switch to using
segwit, the network will be able to support about 70% more transactions. The
network will also be able to support more of the advanced-style payments
(such as multisig) than it can support now because of the different weighting
given to different parts of a transaction after segwit activates (see the
following section for details).

	Weighting data based on how it affects node performance: Some parts of
each Bitcoin block need to be stored by nodes in order to validate future
blocks; other parts of a block can be immediately forgotten (pruned) or used
only for helping other nodes sync their copy of the block chain. One large
part of the immediately prunable data are transaction signatures (witnesses),
and segwit makes it possible to give a different “weight” to segregated
witnesses to correspond with the lower demands they place on node resources.
Specifically, each byte of a segregated witness is given a weight of 1, each
other byte in a block is given a weight of 4, and the maximum allowed weight
of a block is 4 million. Weighting the data this way better aligns the most
profitable strategy for creating blocks with the long-term costs of block
validation.

	Signature covers value: A simple improvement in the way signatures are
generated in segwit simplifies the design of secure signature generators
(such as hardware wallets), reduces the amount of data the signature
generator needs to download, and allows the signature generator to operate
more quickly. This is made possible by having the generator sign the amount
of bitcoins they think they are spending, and by having full nodes refuse to
accept those signatures unless the amount of bitcoins being spent is exactly
the same as was signed. For non-segwit transactions, wallets instead had to
download the complete previous transactions being spent for every payment
they made, which could be a slow operation on hardware wallets and in other
situations where bandwidth or computation speed was constrained.

	Linear scaling of sighash operations: In 2015 a block was produced that
required about 25 seconds to validate on modern hardware because of the way
transaction signature hashes are performed. Other similar blocks, or blocks
that could take even longer to validate, can still be produced today. The
problem that caused this can’t be fixed in a soft fork without unwanted
side-effects, but transactions that opt-in to using segwit will now use a
different signature method that doesn’t suffer from this problem and doesn’t
have any unwanted side-effects.

	Increased security for multisig: Bitcoin addresses (both P2PKH addresses
that start with a ‘1’ and P2SH addresses that start with a ‘3’) use a hash
function known as RIPEMD-160. For P2PKH addresses, this provides about 160
bits of security—which is beyond what cryptographers believe can be broken
today. But because P2SH is more flexible, only about 80 bits of security is
provided per address. Although 80 bits is very strong security, it is within
the realm of possibility that it can be broken by a powerful adversary.
Segwit allows advanced transactions to use the SHA256 hash function instead,
which provides about 128 bits of security (that is 281 trillion times as
much security as 80 bits and is equivalent to the maximum bits of security
believed to be provided by Bitcoin’s choice of parameters for its Elliptic
Curve Digital Security Algorithm [ECDSA].)

	More efficient almost-full-node security Satoshi Nakamoto’s original
Bitcoin paper describes a method for allowing newly-started full nodes to
skip downloading and validating some data from historic blocks that are
protected by large amounts of proof of work. Unfortunately, Nakamoto’s
method can’t guarantee that a newly-started node using this method will
produce an accurate copy of Bitcoin’s current ledger (called the UTXO set),
making the node vulnerable to falling out of consensus with other nodes.
Although the problems with Nakamoto’s method can’t be fixed in a soft fork,
Segwit accomplishes something similar to his original proposal: it makes it
possible for a node to optionally skip downloading some blockchain data
(specifically, the segregated witnesses) while still ensuring that the node
can build an accurate copy of the UTXO set for the block chain with the most
proof of work. Segwit enables this capability at the consensus layer, but
note that Bitcoin Core does not provide an option to use this capability as
of this 0.13.1 release.

	Script versioning: Segwit makes it easy for future soft forks to allow
Bitcoin users to individually opt-in to almost any change in the Bitcoin
Script language when those users receive new transactions. Features
currently being researched by Bitcoin Core contributors that may use this
capability include support for Schnorr signatures, which can improve the
privacy and efficiency of multisig transactions (or transactions with
multiple inputs), and Merklized Abstract Syntax Trees (MAST), which can
improve the privacy and efficiency of scripts with two or more conditions.
Other Bitcoin community members are studying several other improvements
that can be made using script versioning.

Activation for the segwit soft fork is being managed using BIP9
versionbits. Segwit’s version bit is bit 1, and nodes will begin
tracking which blocks signal support for segwit at the beginning of the
first retarget period after segwit’s start date of 15 November 2016. If
95% of blocks within a 2,016-block retarget period (about two weeks)
signal support for segwit, the soft fork will be locked in. After
another 2,016 blocks, segwit will activate.

For more information about segwit, please see the segwit FAQ [https://bitcoincore.org/en/2016/01/26/segwit-benefits/], the
segwit wallet developers guide [https://bitcoincore.org/en/segwit_wallet_dev/] or BIPs 141 [https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki], 143 [https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki],
144 [https://github.com/bitcoin/bips/blob/master/bip-0144.mediawiki], and 145 [https://github.com/bitcoin/bips/blob/master/bip-0145.mediawiki]. If you’re a miner or mining pool
operator, please see the versionbits FAQ [https://bitcoincore.org/en/2016/06/08/version-bits-miners-faq/] for information about
signaling support for a soft fork.

Null dummy soft fork

Combined with the segwit soft fork is an additional change that turns a
long-existing network relay policy into a consensus rule. The
OP_CHECKMULTISIG and OP_CHECKMULTISIGVERIFY opcodes consume an extra
stack element (“dummy element”) after signature validation. The dummy
element is not inspected in any manner, and could be replaced by any
value without invalidating the script.

Because any value can be used for this dummy element, it’s possible for
a third-party to insert data into other people’s transactions, changing
the transaction’s txid (called transaction malleability) and possibly
causing other problems.

Since Bitcoin Core 0.10.0, nodes have defaulted to only relaying and
mining transactions whose dummy element was a null value (0x00, also
called OP_0). The null dummy soft fork turns this relay rule into a
consensus rule both for non-segwit transactions and segwit transactions,
so that this method of mutating transactions is permanently eliminated
from the network.

Signaling for the null dummy soft fork is done by signaling support
for segwit, and the null dummy soft fork will activate at the same time
as segwit.

For more information, please see BIP147 [https://github.com/bitcoin/bips/blob/master/bip-0147.mediawiki].

Low-level RPC changes

	importprunedfunds only accepts two required arguments. Some versions accept
an optional third arg, which was always ignored. Make sure to never pass more
than two arguments.

Linux ARM builds

With the 0.13.0 release, pre-built Linux ARM binaries were added to the set of
uploaded executables. Additional detail on the ARM architecture targeted by each
is provided below.

The following extra files can be found in the download directory or torrent:

	bitcoin-${VERSION}-arm-linux-gnueabihf.tar.gz: Linux binaries targeting
the 32-bit ARMv7-A architecture.

	bitcoin-${VERSION}-aarch64-linux-gnu.tar.gz: Linux binaries targeting
the 64-bit ARMv8-A architecture.

ARM builds are still experimental. If you have problems on a certain device or
Linux distribution combination please report them on the bug tracker, it may be
possible to resolve them. Note that the device you use must be (backward)
compatible with the architecture targeted by the binary that you use.
For example, a Raspberry Pi 2 Model B or Raspberry Pi 3 Model B (in its 32-bit
execution state) device, can run the 32-bit ARMv7-A targeted binary. However,
no model of Raspberry Pi 1 device can run either binary because they are all
ARMv6 architecture devices that are not compatible with ARMv7-A or ARMv8-A.

Note that Android is not considered ARM Linux in this context. The executables
are not expected to work out of the box on Android.

0.13.1 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

Consensus

	#8636 9dfa0c8 Implement NULLDUMMY softfork (BIP147) (jl2012)

	#8848 7a34a46 Add NULLDUMMY verify flag in bitcoinconsensus.h (jl2012)

	#8937 8b66659 Define start and end time for segwit deployment (sipa)

RPC and other APIs

	#8581 526d2b0 Drop misleading option in importprunedfunds (MarcoFalke)

	#8699 a5ec248 Remove createwitnessaddress RPC command (jl2012)

	#8780 794b007 Deprecate getinfo (MarcoFalke)

	#8832 83ad563 Throw JSONRPCError when utxo set can not be read (MarcoFalke)

	#8884 b987348 getblockchaininfo help: pruneheight is the lowest, not highest, block (luke-jr)

	#8858 3f508ed rpc: Generate auth cookie in hex instead of base64 (laanwj)

	#8951 7c2bf4b RPC/Mining: getblocktemplate: Update and fix formatting of help (luke-jr)

Block and transaction handling

	#8611 a9429ca Reduce default number of blocks to check at startup (sipa)

	#8634 3e80ab7 Add policy: null signature for failed CHECK(MULTI)SIG (jl2012)

	#8525 1672225 Do not store witness txn in rejection cache (sipa)

	#8499 9777fe1 Add several policy limits and disable uncompressed keys for segwit scripts (jl2012)

	#8526 0027672 Make non-minimal OP_IF/NOTIF argument non-standard for P2WSH (jl2012)

	#8524 b8c79a0 Precompute sighashes (sipa)

	#8651 b8c79a0 Predeclare PrecomputedTransactionData as struct (sipa)

P2P protocol and network code

	#8740 42ea51a No longer send local address in addrMe (laanwj)

	#8427 69d1cd2 Ignore notfound P2P messages (laanwj)

	#8573 4f84082 Set jonasschnellis dns-seeder filter flag (jonasschnelli)

	#8712 23feab1 Remove maxuploadtargets recommended minimum (jonasschnelli)

	#8862 7ae6242 Fix a few cases where messages were sent after requested disconnect (theuni)

	#8393 fe1975a Support for compact blocks together with segwit (sipa)

	#8282 2611ad7 Feeler connections to increase online addrs in the tried table (EthanHeilman)

	#8612 2215c22 Check for compatibility with download in FindNextBlocksToDownload (sipa)

	#8606 bbf379b Fix some locks (sipa)

	#8594 ab295bb Do not add random inbound peers to addrman (gmaxwell)

	#8940 5b4192b Add x9 service bit support to dnsseed.bluematt.me, seed.bitcoinstats.com (TheBlueMatt, cdecker)

	#8944 685e4c7 Remove bogus assert on number of oubound connections. (TheBlueMatt)

	#8949 0dbc48a Be more agressive in getting connections to peers with relevant services (gmaxwell)

Build system

	#8293 fa5b249 Allow building libbitcoinconsensus without any univalue (luke-jr)

	#8492 8b0bdd3 Allow building bench_bitcoin by itself (luke-jr)

	#8563 147003c Add configure check for -latomic (ajtowns)

	#8626 ea51b0f Berkeley DB v6 compatibility fix (netsafe)

	#8520 75f2065 Remove check for openssl/ec.h (laanwj)

GUI

	#8481 d9f0d4e Fix minimize and close bugs (adlawren)

	#8487 a37cec5 Persist the datadir after option reset (achow101)

	#8697 41fd852 Fix op order to append first alert (rodasmith)

	#8678 8e03382 Fix UI bug that could result in paying unexpected fee (jonasschnelli)

	#8911 7634d8e Translate all files, even if wallet disabled (laanwj)

	#8540 1db3352 Fix random segfault when closing “Choose data directory” dialog (laanwj)

	#7579 f1c0d78 Show network/chain errors in the GUI (jonasschnelli)

Wallet

	#8443 464dedd Trivial cleanup of HD wallet changes (jonasschnelli)

	#8539 cb07f19 CDB: fix debug output (crowning-)

	#8664 091cdeb Fix segwit-related wallet bug (sdaftuar)

	#8693 c6a6291 Add witness address to address book (instagibbs)

	#8765 6288659 Remove “unused” ThreadFlushWalletDB from removeprunedfunds (jonasschnelli)

Tests and QA

	#8713 ae8c7df create_cache: Delete temp dir when done (MarcoFalke)

	#8716 e34374e Check legacy wallet as well (MarcoFalke)

	#8750 d6ebe13 Refactor RPCTestHandler to prevent TimeoutExpired (MarcoFalke)

	#8652 63462c2 remove root test directory for RPC tests (yurizhykin)

	#8724 da94272 walletbackup: Sync blocks inside the loop (MarcoFalke)

	#8400 bea02dc enable rpcbind_test (yurizhykin)

	#8417 f70be14 Add walletdump RPC test (including HD- & encryption-tests) (jonasschnelli)

	#8419 a7aa3cc Enable size accounting in mining unit tests (sdaftuar)

	#8442 8bb1efd Rework hd wallet dump test (MarcoFalke)

	#8528 3606b6b Update p2p-segwit.py to reflect correct behavior (instagibbs)

	#8531 a27cdd8 abandonconflict: Use assert_equal (MarcoFalke)

	#8667 6b07362 Fix SIGHASH_SINGLE bug in test_framework SignatureHash (jl2012)

	#8673 03b0196 Fix obvious assignment/equality error in test (JeremyRubin)

	#8739 cef633c Fix broken sendcmpct test in p2p-compactblocks.py (sdaftuar)

	#8418 ff893aa Add tests for compact blocks (sdaftuar)

	#8803 375437c Ping regularly in p2p-segwit.py to keep connection alive (jl2012)

	#8827 9bbe66e Split up slow RPC calls to avoid pruning test timeouts (sdaftuar)

	#8829 2a8bca4 Add bitcoin-tx JSON tests (jnewbery)

	#8834 1dd1783 blockstore: Switch to dumb dbm (MarcoFalke)

	#8835 d87227d nulldummy.py: Don’t run unused code (MarcoFalke)

	#8836 eb18cc1 bitcoin-util-test.py should fail if the output file is empty (jnewbery)

	#8839 31ab2f8 Avoid ConnectionResetErrors during RPC tests (laanwj)

	#8840 cbc3fe5 Explicitly set encoding to utf8 when opening text files (laanwj)

	#8841 3e4abb5 Fix nulldummy test (jl2012)

	#8854 624a007 Fix race condition in p2p-compactblocks test (sdaftuar)

	#8857 1f60d45 mininode: Only allow named args in wait_until (MarcoFalke)

	#8860 0bee740 util: Move wait_bitcoinds() into stop_nodes() (MarcoFalke)

	#8882 b73f065 Fix race conditions in p2p-compactblocks.py and sendheaders.py (sdaftuar)

	#8904 cc6f551 Fix compact block shortids for a test case (dagurval)

Documentation

	#8754 0e2c6bd Target protobuf 2.6 in OS X build notes. (fanquake)

	#8461 b17a3f9 Document return value of networkhashps for getmininginfo RPC endpoint (jlopp)

	#8512 156e305 Corrected JSON typo on setban of net.cpp (sevastos)

	#8683 8a7d7ff Fix incorrect file name bitcoin.qrc (bitcoinsSG)

	#8891 5e0dd9e Update bips.md for Segregated Witness (fanquake)

	#8545 863ae74 Update git-subtree-check.sh README (MarcoFalke)

	#8607 486650a Fix doxygen off-by-one comments, fix typos (MarcoFalke)

	#8560 c493f43 Fix two VarInt examples in serialize.h (cbarcenas)

	#8737 084cae9 UndoReadFromDisk works on undo files (rev), not on block files (paveljanik)

	#8625 0a35573 Clarify statement about parallel jobs in rpc-tests.py (isle2983)

	#8624 0e6d753 build: Mention curl (MarcoFalke)

	#8604 b09e13c build,doc: Update for 0.13.0+ and OpenBSD 5.9 (laanwj)

	#8939 06d15fb Update implemented bips for 0.13.1 (sipa)

Miscellaneous

	#8742 d31ac72 Specify Protobuf version 2 in paymentrequest.proto (fanquake)

	#8414,#8558,#8676,#8700,#8701,#8702 Add missing copyright headers (isle2983, kazcw)

	#8899 4ed2627 Fix wake from sleep issue with Boost 1.59.0 (fanquake)

	#8817 bcf3806 update bitcoin-tx to output witness data (jnewbery)

	#8513 4e5fc31 Fix a type error that would not compile on OSX. (JeremyRubin)

	#8392 30eac2d Fix several node initialization issues (sipa)

	#8548 305d8ac Use __func__ to get function name for output printing (MarcoFalke)

	#8291 a987431 [util] CopyrightHolders: Check for untranslated substitution (MarcoFalke)

Credits

Thanks to everyone who directly contributed to this release:

	adlawren

	Alexey Vesnin

	Anders Øyvind Urke-Sætre

	Andrew Chow

	Anthony Towns

	BtcDrak

	Chris Stewart

	Christian Barcenas

	Christian Decker

	Cory Fields

	crowning-

	Dagur Valberg Johannsson

	David A. Harding

	Eric Lombrozo

	Ethan Heilman

	fanquake

	Gaurav Rana

	Gregory Maxwell

	instagibbs

	isle2983

	Jameson Lopp

	Jeremy Rubin

	jnewbery

	Johnson Lau

	Jonas Schnelli

	jonnynewbs

	Justin Camarena

	Kaz Wesley

	leijurv

	Luke Dashjr

	MarcoFalke

	Marty Jones

	Matt Corallo

	Micha

	Michael Ford

	mruddy

	Pavel Janík

	Pieter Wuille

	rodasmith

	Sev

	Suhas Daftuar

	whythat

	Wladimir J. van der Laan

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Never released or release notes were lost.

 Upgrading and downgrading

 Bitcoin Core version 0.12.0 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.12.0/

This is a new major version release, bringing new features and other improvements.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Downgrade to a version < 0.10.0

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Downgrade to a version < 0.12.0

Because release 0.12.0 and later will obfuscate the chainstate on every
fresh sync or reindex, the chainstate is not backwards-compatible with
pre-0.12 versions of Bitcoin Core or other software.

If you want to downgrade after you have done a reindex with 0.12.0 or later,
you will need to reindex when you first start Bitcoin Core version 0.11 or
earlier.

Notable changes

Signature validation using libsecp256k1

ECDSA signatures inside Bitcoin transactions now use validation using
libsecp256k1 [https://github.com/bitcoin-core/secp256k1] instead of OpenSSL.

Depending on the platform, this means a significant speedup for raw signature
validation speed. The advantage is largest on x86_64, where validation is over
five times faster. In practice, this translates to a raw reindexing and new
block validation times that are less than half of what it was before.

Libsecp256k1 has undergone very extensive testing and validation.

A side effect of this change is that libconsensus no longer depends on OpenSSL.

Reduce upload traffic

A major part of the outbound traffic is caused by serving historic blocks to
other nodes in initial block download state.

It is now possible to reduce the total upload traffic via the -maxuploadtarget
parameter. This is not a hard limit but a threshold to minimize the outbound
traffic. When the limit is about to be reached, the uploaded data is cut by not
serving historic blocks (blocks older than one week).
Moreover, any SPV peer is disconnected when they request a filtered block.

This option can be specified in MiB per day and is turned off by default
(-maxuploadtarget=0).
The recommended minimum is 144 * MAX_BLOCK_SIZE (currently 144MB) per day.

Whitelisted peers will never be disconnected, although their traffic counts for
calculating the target.

A more detailed documentation about keeping traffic low can be found in
/doc/reduce-traffic.md.

Direct headers announcement (BIP 130)

Between compatible peers, [BIP 130]
(https://github.com/bitcoin/bips/blob/master/bip-0130.mediawiki)
direct headers announcement is used. This means that blocks are advertised by
announcing their headers directly, instead of just announcing the hash. In a
reorganization, all new headers are sent, instead of just the new tip. This
can often prevent an extra roundtrip before the actual block is downloaded.

Memory pool limiting

Previous versions of Bitcoin Core had their mempool limited by checking
a transaction’s fees against the node’s minimum relay fee. There was no
upper bound on the size of the mempool and attackers could send a large
number of transactions paying just slighly more than the default minimum
relay fee to crash nodes with relatively low RAM. A temporary workaround
for previous versions of Bitcoin Core was to raise the default minimum
relay fee.

Bitcoin Core 0.12 will have a strict maximum size on the mempool. The
default value is 300 MB and can be configured with the -maxmempool
parameter. Whenever a transaction would cause the mempool to exceed
its maximum size, the transaction that (along with in-mempool descendants) has
the lowest total feerate (as a package) will be evicted and the node’s effective
minimum relay feerate will be increased to match this feerate plus the initial
minimum relay feerate. The initial minimum relay feerate is set to
1000 satoshis per kB.

Bitcoin Core 0.12 also introduces new default policy limits on the length and
size of unconfirmed transaction chains that are allowed in the mempool
(generally limiting the length of unconfirmed chains to 25 transactions, with a
total size of 101 KB). These limits can be overriden using command line
arguments; see the extended help (--help -help-debug) for more information.

Opt-in Replace-by-fee transactions

It is now possible to replace transactions in the transaction memory pool of
Bitcoin Core 0.12 nodes. Bitcoin Core will only allow replacement of
transactions which have any of their inputs’ nSequence number set to less
than 0xffffffff - 1. Moreover, a replacement transaction may only be
accepted when it pays sufficient fee, as described in [BIP 125]
(https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki).

Transaction replacement can be disabled with a new command line option,
-mempoolreplacement=0. Transactions signaling replacement under BIP125 will
still be allowed into the mempool in this configuration, but replacements will
be rejected. This option is intended for miners who want to continue the
transaction selection behavior of previous releases.

The -mempoolreplacement option is not recommended for wallet users seeking
to avoid receipt of unconfirmed opt-in transactions, because this option does
not prevent transactions which are replaceable under BIP 125 from being accepted
(only subsequent replacements, which other nodes on the network that implement
BIP 125 are likely to relay and mine). Wallet users wishing to detect whether
a transaction is subject to replacement under BIP 125 should instead use the
updated RPC calls gettransaction and listtransactions, which now have an
additional field in the output indicating if a transaction is replaceable under
BIP125 (“bip125-replaceable”).

Note that the wallet in Bitcoin Core 0.12 does not yet have support for
creating transactions that would be replaceable under BIP 125.

RPC: Random-cookie RPC authentication

When no -rpcpassword is specified, the daemon now uses a special ‘cookie’
file for authentication. This file is generated with random content when the
daemon starts, and deleted when it exits. Its contents are used as
authentication token. Read access to this file controls who can access through
RPC. By default it is stored in the data directory but its location can be
overridden with the option -rpccookiefile.

This is similar to Tor’s CookieAuthentication: see
https://www.torproject.org/docs/tor-manual.html.en

This allows running bitcoind without having to do any manual configuration.

Relay: Any sequence of pushdatas in OP_RETURN outputs now allowed

Previously OP_RETURN outputs with a payload were only relayed and mined if they
had a single pushdata. This restriction has been lifted to allow any
combination of data pushes and numeric constant opcodes (OP_1 to OP_16) after
the OP_RETURN. The limit on OP_RETURN output size is now applied to the entire
serialized scriptPubKey, 83 bytes by default. (the previous 80 byte default plus
three bytes overhead)

Relay: New and only new blocks relayed when pruning

When running in pruned mode, the client will now relay new blocks. When
responding to the getblocks message, only hashes of blocks that are on disk
and are likely to remain there for some reasonable time window (1 hour) will be
returned (previously all relevant hashes were returned).

Relay and Mining: Priority transactions

Bitcoin Core has a heuristic ‘priority’ based on coin value and age. This
calculation is used for relaying of transactions which do not pay the
minimum relay fee, and can be used as an alternative way of sorting
transactions for mined blocks. Bitcoin Core will relay transactions with
insufficient fees depending on the setting of -limitfreerelay=<r> (default:
r=15 kB per minute) and -blockprioritysize=<s>.

In Bitcoin Core 0.12, when mempool limit has been reached a higher minimum
relay fee takes effect to limit memory usage. Transactions which do not meet
this higher effective minimum relay fee will not be relayed or mined even if
they rank highly according to the priority heuristic.

The mining of transactions based on their priority is also now disabled by
default. To re-enable it, simply set -blockprioritysize=<n> where is the size
in bytes of your blocks to reserve for these transactions. The old default was
50k, so to retain approximately the same policy, you would set
-blockprioritysize=50000.

Additionally, as a result of computational simplifications, the priority value
used for transactions received with unconfirmed inputs is lower than in prior
versions due to avoiding recomputing the amounts as input transactions confirm.

External miner policy set via the prioritisetransaction RPC to rank
transactions already in the mempool continues to work as it has previously.
Note, however, that if mining priority transactions is left disabled, the
priority delta will be ignored and only the fee metric will be effective.

This internal automatic prioritization handling is being considered for removal
entirely in Bitcoin Core 0.13, and it is at this time undecided whether the
more accurate priority calculation for chained unconfirmed transactions will be
restored. Community direction on this topic is particularly requested to help
set project priorities.

Automatically use Tor hidden services

Starting with Tor version 0.2.7.1 it is possible, through Tor’s control socket
API, to create and destroy ‘ephemeral’ hidden services programmatically.
Bitcoin Core has been updated to make use of this.

This means that if Tor is running (and proper authorization is available),
Bitcoin Core automatically creates a hidden service to listen on, without
manual configuration. Bitcoin Core will also use Tor automatically to connect
to other .onion nodes if the control socket can be successfully opened. This
will positively affect the number of available .onion nodes and their usage.

This new feature is enabled by default if Bitcoin Core is listening, and
a connection to Tor can be made. It can be configured with the -listenonion,
-torcontrol and -torpassword settings. To show verbose debugging
information, pass -debug=tor.

Notifications through ZMQ

Bitcoind can now (optionally) asynchronously notify clients through a
ZMQ-based PUB socket of the arrival of new transactions and blocks.
This feature requires installation of the ZMQ C API library 4.x and
configuring its use through the command line or configuration file.
Please see docs/zmq.md for details of operation.

Wallet: Transaction fees

Various improvements have been made to how the wallet calculates
transaction fees.

Users can decide to pay a predefined fee rate by setting -paytxfee=<n>
(or settxfee <n> rpc during runtime). A value of n=0 signals Bitcoin
Core to use floating fees. By default, Bitcoin Core will use floating
fees.

Based on past transaction data, floating fees approximate the fees
required to get into the mth block from now. This is configurable
with -txconfirmtarget=<m> (default: 2).

Sometimes, it is not possible to give good estimates, or an estimate
at all. Therefore, a fallback value can be set with -fallbackfee=<f>
(default: 0.0002 BTC/kB).

At all times, Bitcoin Core will cap fees at -maxtxfee=<x> (default:
0.10) BTC.
Furthermore, Bitcoin Core will never create transactions paying less than
the current minimum relay fee.
Finally, a user can set the minimum fee rate for all transactions with
-mintxfee=<i>, which defaults to 1000 satoshis per kB.

Wallet: Negative confirmations and conflict detection

The wallet will now report a negative number for confirmations that indicates
how deep in the block chain the conflict is found. For example, if a transaction
A has 5 confirmations and spends the same input as a wallet transaction B, B
will be reported as having -5 confirmations. If another wallet transaction C
spends an output from B, it will also be reported as having -5 confirmations.
To detect conflicts with historical transactions in the chain a one-time
-rescan may be needed.

Unlike earlier versions, unconfirmed but non-conflicting transactions will never
get a negative confirmation count. They are not treated as spendable unless
they’re coming from ourself (change) and accepted into our local mempool,
however. The new “trusted” field in the listtransactions RPC output
indicates whether outputs of an unconfirmed transaction are considered
spendable.

Wallet: Merkle branches removed

Previously, every wallet transaction stored a Merkle branch to prove its
presence in blocks. This wasn’t being used for more than an expensive
sanity check. Since 0.12, these are no longer stored. When loading a
0.12 wallet into an older version, it will automatically rescan to avoid
failed checks.

Wallet: Pruning

With 0.12 it is possible to use wallet functionality in pruned mode.
This can reduce the disk usage from currently around 60 GB to
around 2 GB.

However, rescans as well as the RPCs importwallet, importaddress,
importprivkey are disabled.

To enable block pruning set prune=<N> on the command line or in
bitcoin.conf, where N is the number of MiB to allot for
raw block & undo data.

A value of 0 disables pruning. The minimal value above 0 is 550. Your
wallet is as secure with high values as it is with low ones. Higher
values merely ensure that your node will not shut down upon blockchain
reorganizations of more than 2 days - which are unlikely to happen in
practice. In future releases, a higher value may also help the network
as a whole: stored blocks could be served to other nodes.

For further information about pruning, you may also consult the release
notes of v0.11.0 [https://github.com/bitcoin/bitcoin/blob/v0.11.0/doc/release-notes.md#block-file-pruning].

NODE_BLOOM service bit

Support for the NODE_BLOOM service bit, as described in BIP
111 [https://github.com/bitcoin/bips/blob/master/bip-0111.mediawiki], has been
added to the P2P protocol code.

BIP 111 defines a service bit to allow peers to advertise that they support
bloom filters (such as used by SPV clients) explicitly. It also bumps the protocol
version to allow peers to identify old nodes which allow bloom filtering of the
connection despite lacking the new service bit.

In this version, it is only enforced for peers that send protocol versions
>=70011. For the next major version it is planned that this restriction will be
removed. It is recommended to update SPV clients to check for the NODE_BLOOM
service bit for nodes that report versions newer than 70011.

Option parsing behavior

Command line options are now parsed strictly in the order in which they are
specified. It used to be the case that -X -noX ends up, unintuitively, with X
set, as -X had precedence over -noX. This is no longer the case. Like for
other software, the last specified value for an option will hold.

RPC: Low-level API changes

	Monetary amounts can be provided as strings. This means that for example the
argument to sendtoaddress can be “0.0001” instead of 0.0001. This can be an
advantage if a JSON library insists on using a lossy floating point type for
numbers, which would be dangerous for monetary amounts.

	The asm property of each scriptSig now contains the decoded signature hash
type for each signature that provides a valid defined hash type.

	OP_NOP2 has been renamed to OP_CHECKLOCKTIMEVERIFY by BIP 65 [https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki]

The following items contain assembly representations of scriptSig signatures
and are affected by this change:

	RPC getrawtransaction

	RPC decoderawtransaction

	RPC decodescript

	REST /rest/tx/ (JSON format)

	REST /rest/block/ (JSON format when including extended tx details)

	bitcoin-tx -json

For example, the scriptSig.asm property of a transaction input that
previously showed an assembly representation of:

304502207fa7a6d1e0ee81132a269ad84e68d695483745cde8b541e3bf630749894e342a022100c1f7ab20e13e22fb95281a870f3dcf38d782e53023ee313d741ad0cfbc0c509001 400000 OP_NOP2

now shows as:

304502207fa7a6d1e0ee81132a269ad84e68d695483745cde8b541e3bf630749894e342a022100c1f7ab20e13e22fb95281a870f3dcf38d782e53023ee313d741ad0cfbc0c5090[ALL] 400000 OP_CHECKLOCKTIMEVERIFY

Note that the output of the RPC decodescript did not change because it is
configured specifically to process scriptPubKey and not scriptSig scripts.

RPC: SSL support dropped

SSL support for RPC, previously enabled by the option rpcssl has been dropped
from both the client and the server. This was done in preparation for removing
the dependency on OpenSSL for the daemon completely.

Trying to use rpcssl will result in an error:

Error: SSL mode for RPC (-rpcssl) is no longer supported.

If you are one of the few people that relies on this feature, a flexible
migration path is to use stunnel. This is an utility that can tunnel
arbitrary TCP connections inside SSL. On e.g. Ubuntu it can be installed with:

sudo apt-get install stunnel4

Then, to tunnel a SSL connection on 28332 to a RPC server bound on localhost on port 18332 do:

stunnel -d 28332 -r 127.0.0.1:18332 -p stunnel.pem -P ''

It can also be set up system-wide in inetd style.

Another way to re-attain SSL would be to setup a httpd reverse proxy. This solution
would allow the use of different authentication, loadbalancing, on-the-fly compression and
caching. A sample config for apache2 could look like:

Listen 443

NameVirtualHost *:443
<VirtualHost *:443>

SSLEngine On
SSLCertificateFile /etc/apache2/ssl/server.crt
SSLCertificateKeyFile /etc/apache2/ssl/server.key

<Location /bitcoinrpc>
 ProxyPass http://127.0.0.1:8332/
 ProxyPassReverse http://127.0.0.1:8332/
 # optional enable digest auth
 # AuthType Digest
 # ...

 # optional bypass bitcoind rpc basic auth
 # RequestHeader set Authorization "Basic <hash>"
 # get the <hash> from the shell with: base64 <<< bitcoinrpc:<password>
</Location>

Or, balance the load:
ProxyPass / balancer://balancer_cluster_name

</VirtualHost>

Mining Code Changes

The mining code in 0.12 has been optimized to be significantly faster and use less
memory. As part of these changes, consensus critical calculations are cached on a
transaction’s acceptance into the mempool and the mining code now relies on the
consistency of the mempool to assemble blocks. However all blocks are still tested
for validity after assembly.

Other P2P Changes

The list of banned peers is now stored on disk rather than in memory.
Restarting bitcoind will no longer clear out the list of banned peers; instead
a new RPC call (clearbanned) can be used to manually clear the list. The new
setban RPC call can also be used to manually ban or unban a peer.

0.12.0 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, refactors and string updates. For convenience in locating
the code changes and accompanying discussion, both the pull request and
git merge commit are mentioned.

RPC and REST

	#6121 466f0ea Convert entire source tree from json_spirit to UniValue (Jonas Schnelli)

	#6234 d38cd47 fix rpcmining/getblocktemplate univalue transition logic error (Jonas Schnelli)

	#6239 643114f Don’t go through double in AmountFromValue and ValueFromAmount (Wladimir J. van der Laan)

	#6266 ebab5d3 Fix univalue handling of \u0000 characters. (Daniel Kraft)

	#6276 f3d4dbb Fix getbalance * 0 (Tom Harding)

	#6257 5ebe7db Add paytxfee and errors JSON fields where appropriate (Stephen)

	#6271 754aae5 New RPC command disconnectnode (Alex van der Peet)

	#6158 0abfa8a Add setban/listbanned RPC commands (Jonas Schnelli)

	#6307 7ecdcd9 rpcban fixes (Jonas Schnelli)

	#6290 5753988 rpc: make gettxoutsettinfo run lock-free (Wladimir J. van der Laan)

	#6262 247b914 Return all available information via RPC call “validateaddress” (dexX7)

	#6339 c3f0490 UniValue: don’t escape solidus, keep espacing of reverse solidus (Jonas Schnelli)

	#6353 6bcb0a2 Show softfork status in getblockchaininfo (Wladimir J. van der Laan)

	#6247 726e286 Add getblockheader RPC call (Peter Todd)

	#6362 d6db115 Fix null id in RPC response during startup (Forrest Voight)

	#5486 943b322 [REST] JSON support for /rest/headers (Jonas Schnelli)

	#6379 c52e8b3 rpc: Accept scientific notation for monetary amounts in JSON (Wladimir J. van der Laan)

	#6388 fd5dfda rpc: Implement random-cookie based authentication (Wladimir J. van der Laan)

	#6457 3c923e8 Include pruned state in chaininfo.json (Simon Males)

	#6456 bfd807f rpc: Avoid unnecessary parsing roundtrip in number formatting, fix locale issue (Wladimir J. van der Laan)

	#6380 240b30e rpc: Accept strings in AmountFromValue (Wladimir J. van der Laan)

	#6346 6bb2805 Add OP_RETURN support in createrawtransaction RPC call, add tests. (paveljanik)

	#6013 6feeec1 [REST] Add memory pool API (paveljanik)

	#6576 da9beb2 Stop parsing JSON after first finished construct. (Daniel Kraft)

	#5677 9aa9099 libevent-based http server (Wladimir J. van der Laan)

	#6633 bbc2b39 Report minimum ping time in getpeerinfo (Matt Corallo)

	#6648 cd381d7 Simplify logic of REST request suffix parsing. (Daniel Kraft)

	#6695 5e21388 libevent http fixes (Wladimir J. van der Laan)

	#5264 48efbdb show scriptSig signature hash types in transaction decodes. fixes #3166 (mruddy)

	#6719 1a9f19a Make HTTP server shutdown more graceful (Wladimir J. van der Laan)

	#6859 0fbfc51 http: Restrict maximum size of http + headers (Wladimir J. van der Laan)

	#5936 bf7c195 [RPC] Add optional locktime to createrawtransaction (Tom Harding)

	#6877 26f5b34 rpc: Add maxmempool and effective min fee to getmempoolinfo (Wladimir J. van der Laan)

	#6970 92701b3 Fix crash in validateaddress with -disablewallet (Wladimir J. van der Laan)

	#5574 755b4ba Expose GUI labels in RPC as comments (Luke-Jr)

	#6990 dbd2c13 http: speed up shutdown (Wladimir J. van der Laan)

	#7013 36baa9f Remove LOCK(cs_main) from decodescript (Peter Todd)

	#6999 972bf9c add (max)uploadtarget infos to getnettotals RPC help (Jonas Schnelli)

	#7011 31de241 Add mediantime to getblockchaininfo (Peter Todd)

	#7065 f91e29f http: add Boost 1.49 compatibility (Wladimir J. van der Laan)

	#7087 be281d8 [Net]Add -enforcenodebloom option (Patrick Strateman)

	#7044 438ee59 RPC: Added additional config option for multiple RPC users. (Gregory Sanders)

	#7072 c143c49 [RPC] Add transaction size to JSON output (Nikita Zhavoronkov)

	#7022 9afbd96 Change default block priority size to 0 (Alex Morcos)

	#7141 c0c08c7 rpc: Don’t translate warning messages (Wladimir J. van der Laan)

	#7312 fd4bd50 Add RPC call abandontransaction (Alex Morcos)

	#7222 e25b158 RPC: indicate which transactions are replaceable (Suhas Daftuar)

	#7472 b2f2b85 rpc: Add WWW-Authenticate header to 401 response (Wladimir J. van der Laan)

	#7469 9cb31e6 net.h fix spelling: misbeha{b,v}ing (Matt)

Configuration and command-line options

	#6164 8d05ec7 Allow user to use -debug=1 to enable all debugging (lpescher)

	#5288 4452205 Added -whiteconnections=<n> option (Josh Lehan)

	#6284 10ac38e Fix argument parsing oddity with -noX (Wladimir J. van der Laan)

	#6489 c9c017a Give a better error message if system clock is bad (Casey Rodarmor)

	#6462 c384800 implement uacomment config parameter which can add comments to user agent as per BIP-0014 (Pavol Rusnak)

	#6647 a3babc8 Sanitize uacomment (MarcoFalke)

	#6742 3b2d37c Changed logging to make -logtimestamps to work also for -printtoconsole (arnuschky)

	#6846 2cd020d alias -h for -help (Daniel Cousens)

	#6622 7939164 Introduce -maxuploadtarget (Jonas Schnelli)

	#6881 2b62551 Debug: Add option for microsecond precision in debug.log (Suhas Daftuar)

	#6776 e06c14f Support -checkmempool=N, which runs checks once every N transactions (Pieter Wuille)

	#6896 d482c0a Make -checkmempool=1 not fail through int32 overflow (Pieter Wuille)

	#6993 b632145 Add -blocksonly option (Patrick Strateman)

	#7323 a344880 0.12: Backport -bytespersigop option (Luke-Jr)

	#7386 da83ecd Add option -permitrbf to set transaction replacement policy (Wladimir J. van der Laan)

	#7290 b16b5bc Add missing options help (MarcoFalke)

	#7440 c76bfff Rename permitrbf to mempoolreplacement and provide minimal string-list forward compatibility (Luke-Jr)

Block and transaction handling

	#6203 f00b623 Remove P2SH coinbase flag, no longer interesting (Luke-Jr)

	#6222 9c93ee5 Explicitly set tx.nVersion for the genesis block and mining tests (Mark Friedenbach)

	#5985 3a1d3e8 Fix removing of orphan transactions (Alex Morcos)

	#6221 dd8fe82 Prune: Support noncontiguous block files (Adam Weiss)

	#6124 41076aa Mempool only CHECKLOCKTIMEVERIFY (BIP65) verification, unparameterized version (Peter Todd)

	#6329 d0a10c1 acceptnonstdtxn option to skip (most) “non-standard transaction” checks, for testnet/regtest only (Luke-Jr)

	#6410 7cdefb9 Implement accurate memory accounting for mempool (Pieter Wuille)

	#6444 24ce77d Exempt unspendable transaction outputs from dust checks (dexX7)

	#5913 a0625b8 Add absurdly high fee message to validation state (Shaul Kfir)

	#6177 2f746c6 Prevent block.nTime from decreasing (Mark Friedenbach)

	#6377 e545371 Handle no chain tip available in InvalidChainFound() (Ross Nicoll)

	#6551 39ddaeb Handle leveldb::DestroyDB() errors on wipe failure (Adam Weiss)

	#6654 b0ce450 Mempool package tracking (Suhas Daftuar)

	#6715 82d2aef Fix mempool packages (Suhas Daftuar)

	#6680 4f44530 use CBlockIndex instead of uint256 for UpdatedBlockTip signal (Jonas Schnelli)

	#6650 4fac576 Obfuscate chainstate (James O’Beirne)

	#6777 9caaf6e Unobfuscate chainstate data in CCoinsViewDB::GetStats (James O’Beirne)

	#6722 3b20e23 Limit mempool by throwing away the cheapest txn and setting min relay fee to it (Matt Corallo)

	#6889 38369dd fix locking issue with new mempool limiting (Jonas Schnelli)

	#6464 8f3b3cd Always clean up manual transaction prioritization (Casey Rodarmor)

	#6865 d0badb9 Fix chainstate serialized_size computation (Pieter Wuille)

	#6566 ff057f4 BIP-113: Mempool-only median time-past as endpoint for lock-time calculations (Mark Friedenbach)

	#6934 3038eb6 Restores mempool only BIP113 enforcement (Gregory Maxwell)

	#6965 de7d459 Benchmark sanity checks and fork checks in ConnectBlock (Matt Corallo)

	#6918 eb6172a Make sigcache faster, more efficient, larger (Pieter Wuille)

	#6771 38ed190 Policy: Lower default limits for tx chains (Alex Morcos)

	#6932 73fa5e6 ModifyNewCoins saves database lookups (Alex Morcos)

	#5967 05d5918 Alter assumptions in CCoinsViewCache::BatchWrite (Alex Morcos)

	#6871 0e93586 nSequence-based Full-RBF opt-in (Peter Todd)

	#7008 eb77416 Lower bound priority (Alex Morcos)

	#6915 2ef5ffa [Mempool] Improve removal of invalid transactions after reorgs (Suhas Daftuar)

	#6898 4077ad2 Rewrite CreateNewBlock (Alex Morcos)

	#6872 bdda4d5 Remove UTXO cache entries when the tx they were added for is removed/does not enter mempool (Matt Corallo)

	#7062 12c469b [Mempool] Fix mempool limiting and replace-by-fee for PrioritiseTransaction (Suhas Daftuar)

	#7276 76de36f Report non-mandatory script failures correctly (Pieter Wuille)

	#7217 e08b7cb Mark blocks with too many sigops as failed (Suhas Daftuar)

	#7387 f4b2ce8 Get rid of inaccurate ScriptSigArgsExpected (Pieter Wuille)

P2P protocol and network code

	#6172 88a7ead Ignore getheaders requests when not synced (Suhas Daftuar)

	#5875 9d60602 Be stricter in processing unrequested blocks (Suhas Daftuar)

	#6256 8ccc07c Use best header chain timestamps to detect partitioning (Gavin Andresen)

	#6283 a903ad7 make CAddrMan::size() return the correct type of size_t (Diapolo)

	#6272 40400d5 Improve proxy initialization (continues #4871) (Wladimir J. van der Laan, Diapolo)

	#6310 66e5465 banlist.dat: store banlist on disk (Jonas Schnelli)

	#6412 1a2de32 Test whether created sockets are select()able (Pieter Wuille)

	#6498 219b916 Keep track of recently rejected transactions with a rolling bloom filter (cont’d) (Peter Todd)

	#6556 70ec975 Fix masking of irrelevant bits in address groups. (Alex Morcos)

	#6530 ea19c2b Improve addrman Select() performance when buckets are nearly empty (Pieter Wuille)

	#6583 af9305a add support for miniupnpc api version 14 (Pavel Vasin)

	#6374 69dc5b5 Connection slot exhaustion DoS mitigation (Patrick Strateman)

	#6636 536207f net: correctly initialize nMinPingUsecTime (Wladimir J. van der Laan)

	#6579 0c27795 Add NODE_BLOOM service bit and bump protocol version (Matt Corallo)

	#6148 999c8be Relay blocks when pruning (Suhas Daftuar)

	#6588 cf9bb11 In (strCommand == “tx”), return if AlreadyHave() (Tom Harding)

	#6974 2f71b07 Always allow getheaders from whitelisted peers (Wladimir J. van der Laan)

	#6639 bd629d7 net: Automatically create hidden service, listen on Tor (Wladimir J. van der Laan)

	#6984 9ffc687 don’t enforce maxuploadtarget’s disconnect for whitelisted peers (Jonas Schnelli)

	#7046 c322652 Net: Improve blocks only mode. (Patrick Strateman)

	#7090 d6454f6 Connect to Tor hidden services by default (when listening on Tor) (Peter Todd)

	#7106 c894fbb Fix and improve relay from whitelisted peers (Pieter Wuille)

	#7129 5d5ef3a Direct headers announcement (rebase of #6494) (Pieter Wuille)

	#7079 1b5118b Prevent peer flooding inv request queue (redux) (redux) (Gregory Maxwell)

	#7166 6ba25d2 Disconnect on mempool requests from peers when over the upload limit. (Gregory Maxwell)

	#7133 f31955d Replace setInventoryKnown with a rolling bloom filter (rebase of #7100) (Pieter Wuille)

	#7174 82aff88 Don’t do mempool lookups for “mempool” command without a filter (Matt Corallo)

	#7179 44fef99 net: Fix sent reject messages for blocks and transactions (Wladimir J. van der Laan)

	#7181 8fc174a net: Add and document network messages in protocol.h (Wladimir J. van der Laan)

	#7125 10b88be Replace global trickle node with random delays (Pieter Wuille)

	#7415 cb83beb net: Hardcoded seeds update January 2016 (Wladimir J. van der Laan)

	#7438 e2d9a58 Do not absolutely protect local peers; decide group ties based on time (Gregory Maxwell)

	#7439 86755bc Add whitelistforcerelay to control forced relaying. [#7099 redux] (Gregory Maxwell)

	#7482 e16f5b4 Ensure headers count is correct (Suhas Daftuar)

Validation

	#5927 8d9f0a6 Reduce checkpoints’ effect on consensus. (Pieter Wuille)

	#6299 24f2489 Bugfix: Don’t check the genesis block header before accepting it (Jorge Timón)

	#6361 d7ada03 Use real number of cores for default -par, ignore virtual cores (Wladimir J. van der Laan)

	#6519 87f37e2 Make logging for validation optional (Wladimir J. van der Laan)

	#6351 2a1090d CHECKLOCKTIMEVERIFY (BIP65) IsSuperMajority() soft-fork (Peter Todd)

	#6931 54e8bfe Skip BIP 30 verification where not necessary (Alex Morcos)

	#6954 e54ebbf Switch to libsecp256k1-based ECDSA validation (Pieter Wuille)

	#6508 61457c2 Switch to a constant-space Merkle root/branch algorithm. (Pieter Wuille)

	#6914 327291a Add pre-allocated vector type and use it for CScript (Pieter Wuille)

	#7500 889e5b3 Correctly report high-S violations (Pieter Wuille)

Build system

	#6210 0e4f2a0 build: disable optional use of gmp in internal secp256k1 build (Wladimir J. van der Laan)

	#6214 87406aa [OSX] revert renaming of Bitcoin-Qt.app and use CFBundleDisplayName (partial revert of #6116) (Jonas Schnelli)

	#6218 9d67b10 build/gitian misc updates (Cory Fields)

	#6269 d4565b6 gitian: Use the new bitcoin-detached-sigs git repo for OSX signatures (Cory Fields)

	#6418 d4a910c Add autogen.sh to source tarball. (randy-waterhouse)

	#6373 1ae3196 depends: non-qt bumps for 0.12 (Cory Fields)

	#6434 059b352 Preserve user-passed CXXFLAGS with –enable-debug (Gavin Andresen)

	#6501 fee6554 Misc build fixes (Cory Fields)

	#6600 ef4945f Include bitcoin-tx binary on Debian/Ubuntu (Zak Wilcox)

	#6619 4862708 depends: bump miniupnpc and ccache (Michael Ford)

	#6801 ae69a75 [depends] Latest config.guess and config.sub (Michael Ford)

	#6938 193f7b5 build: If both Qt4 and Qt5 are installed, use Qt5 (Wladimir J. van der Laan)

	#7092 348b281 build: Set osx permissions in the dmg to make Gatekeeper happy (Cory Fields)

	#6980 eccd671 [Depends] Bump Boost, miniupnpc, ccache & zeromq (Michael Ford)

	#7424 aa26ee0 Add security/export checks to gitian and fix current failures (Cory Fields)

Wallet

	#6183 87550ee Fix off-by-one error w/ nLockTime in the wallet (Peter Todd)

	#6057 ac5476e re-enable wallet in autoprune (Jonas Schnelli)

	#6356 9e6c33b Delay initial pruning until after wallet init (Adam Weiss)

	#6088 91389e5 fundrawtransaction (Matt Corallo)

	#6415 ddd8d80 Implement watchonly support in fundrawtransaction (Matt Corallo)

	#6567 0f0f323 Fix crash when mining with empty keypool. (Daniel Kraft)

	#6688 4939eab Fix locking in GetTransaction. (Alex Morcos)

	#6645 4dbd43e Enable wallet key imports without rescan in pruned mode. (Gregory Maxwell)

	#6550 5b77244 Do not store Merkle branches in the wallet. (Pieter Wuille)

	#5924 12a7712 Clean up change computation in CreateTransaction. (Daniel Kraft)

	#6906 48b5b84 Reject invalid pubkeys when reading ckey items from the wallet. (Gregory Maxwell)

	#7010 e0a5ef8 Fix fundrawtransaction handling of includeWatching (Peter Todd)

	#6851 616d61b Optimisation: Store transaction list order in memory rather than compute it every need (Luke-Jr)

	#6134 e92377f Improve usage of fee estimation code (Alex Morcos)

	#7103 a775182 [wallet, rpc tests] Fix settxfee, paytxfee (MarcoFalke)

	#7105 30c2d8c Keep track of explicit wallet conflicts instead of using mempool (Pieter Wuille)

	#7096 9490bd7 [Wallet] Improve minimum absolute fee GUI options (Jonas Schnelli)

	#6216 83f06ca Take the training wheels off anti-fee-sniping (Peter Todd)

	#4906 96e8d12 Issue#1643: Coinselection prunes extraneous inputs from ApproximateBestSubset (Murch)

	#7200 06c6a58 Checks for null data transaction before issuing error to debug.log (Andy Craze)

	#7296 a36d79b Add sane fallback for fee estimation (Alex Morcos)

	#7293 ff9b610 Add regression test for vValue sort order (MarcoFalke)

	#7306 4707797 Make sure conflicted wallet tx’s update balances (Alex Morcos)

	#7381 621bbd8 [walletdb] Fix syntax error in key parser (MarcoFalke)

	#7491 00ec73e wallet: Ignore MarkConflict if block hash is not known (Wladimir J. van der Laan)

	#7502 1329963 Update the wallet best block marker before pruning (Pieter Wuille)

GUI

	#6217 c57e12a disconnect peers from peers tab via context menu (Diapolo)

	#6209 ab0ec67 extend rpc console peers tab (Diapolo)

	#6484 1369d69 use CHashWriter also in SignVerifyMessageDialog (Pavel Vasin)

	#6487 9848d42 Introduce PlatformStyle (Wladimir J. van der Laan)

	#6505 100c9d3 cleanup icons (MarcoFalke)

	#4587 0c465f5 allow users to set -onion via GUI (Diapolo)

	#6529 c0f66ce show client user agent in debug window (Diapolo)

	#6594 878ea69 Disallow duplicate windows. (Casey Rodarmor)

	#5665 6f55cdd add verifySize() function to PaymentServer (Diapolo)

	#6317 ca5e2a1 minor optimisations in peertablemodel (Diapolo)

	#6315 e59d2a8 allow banning and unbanning over UI->peers table (Jonas Schnelli)

	#6653 e04b2fa Pop debug window in foreground when opened twice (MarcoFalke)

	#6864 c702521 Use monospace font (MarcoFalke)

	#6887 3694b74 Update coin control and smartfee labels (MarcoFalke)

	#7000 814697c add shortcurts for debug-/console-window (Jonas Schnelli)

	#6951 03403d8 Use maxTxFee instead of 10000000 (MarcoFalke)

	#7051 a190777 ui: Add “Copy raw transaction data” to transaction list context menu (Wladimir J. van der Laan)

	#6979 776848a simple mempool info in debug window (Jonas Schnelli)

	#7006 26af1ac add startup option to reset Qt settings (Jonas Schnelli)

	#6780 2a94cd6 Call init’s parameter interaction before we create the UI options model (Jonas Schnelli)

	#7112 96b8025 reduce cs_main locks during tip update, more fluently update UI (Jonas Schnelli)

	#7206 f43c2f9 Add “NODE_BLOOM” to guiutil so that peers don’t get UNKNOWN[4] (Matt Corallo)

	#7282 5cadf3e fix coincontrol update issue when deleting a send coins entry (Jonas Schnelli)

	#7319 1320300 Intro: Display required space (MarcoFalke)

	#7318 9265e89 quickfix for RPC timer interface problem (Jonas Schnelli)

	#7327 b16b5bc [Wallet] Transaction View: LastMonth calculation fixed (crowning-)

	#7364 7726c48 [qt] Windows: Make rpcconsole monospace font larger (MarcoFalke)

	#7384 294f432 [qt] Peertable: Increase SUBVERSION_COLUMN_WIDTH (MarcoFalke)

Tests and QA

	#6305 9005c91 build: comparison tool swap (Cory Fields)

	#6318 e307e13 build: comparison tool NPE fix (Cory Fields)

	#6337 0564c5b Testing infrastructure: mocktime fixes (Gavin Andresen)

	#6350 60abba1 add unit tests for the decodescript rpc (mruddy)

	#5881 3203a08 Fix and improve txn_doublespend.py test (Tom Harding)

	#6390 6a73d66 tests: Fix bitcoin-tx signing test case (Wladimir J. van der Laan)

	#6368 7fc25c2 CLTV: Add more tests to improve coverage (Esteban Ordano)

	#6414 5121c68 Fix intermittent test failure, reduce test time (Tom Harding)

	#6417 44fa82d [QA] fix possible reorg issue in (fund)rawtransaction(s).py RPC test (Jonas Schnelli)

	#6398 3d9362d rpc: Remove chain-specific RequireRPCPassword (Wladimir J. van der Laan)

	#6428 bb59e78 tests: Remove old sh-based test framework (Wladimir J. van der Laan)

	#5515 d946e9a RFC: Assert on probable deadlocks if the second lock isnt try_lock (Matt Corallo)

	#6287 d2464df Clang lock debug (Cory Fields)

	#6465 410fd74 Don’t share objects between TestInstances (Casey Rodarmor)

	#6534 6c1c7fd Fix test locking issues and un-revert the probable-deadlines assertions commit (Cory Fields)

	#6509 bb4faee Fix race condition on test node shutdown (Casey Rodarmor)

	#6523 561f8af Add p2p-fullblocktest.py (Casey Rodarmor)

	#6590 981fd92 Fix stale socket rebinding and re-enable python tests for Windows (Cory Fields)

	#6730 cb4d6d0 build: Remove dependency of bitcoin-cli on secp256k1 (Wladimir J. van der Laan)

	#6616 5ab5dca Regression Tests: Migrated rpc-tests.sh to all Python rpc-tests.py (Peter Tschipper)

	#6720 d479311 Creates unittests for addrman, makes addrman more testable. (Ethan Heilman)

	#6853 c834f56 Added fPowNoRetargeting field to Consensus::Params (Eric Lombrozo)

	#6827 87e5539 [rpc-tests] Check return code (MarcoFalke)

	#6848 f2c869a Add DERSIG transaction test cases (Ross Nicoll)

	#6813 5242bb3 Support gathering code coverage data for RPC tests with lcov (dexX7)

	#6888 c8322ff Clear strMiscWarning before running PartitionAlert (Eric Lombrozo)

	#6894 2675276 [Tests] Fix BIP65 p2p test (Suhas Daftuar)

	#6863 725539e [Test Suite] Fix test for null tx input (Daniel Kraft)

	#6926 a6d0d62 tests: Initialize networking on windows (Wladimir J. van der Laan)

	#6822 9fa54a1 [tests] Be more strict checking dust (MarcoFalke)

	#6804 5fcc14e [tests] Add basic coverage reporting for RPC tests (James O’Beirne)

	#7045 72dccfc Bugfix: Use unique autostart filenames on Linux for testnet/regtest (Luke-Jr)

	#7095 d8368a0 Replace scriptnum_test’s normative ScriptNum implementation (Wladimir J. van der Laan)

	#7063 6abf6eb [Tests] Add prioritisetransaction RPC test (Suhas Daftuar)

	#7137 16f4a6e Tests: Explicitly set chain limits in replace-by-fee test (Suhas Daftuar)

	#7216 9572e49 Removed offline testnet DNSSeed ‘alexykot.me’. (tnull)

	#7209 f3ad812 test: don’t override BITCOIND and BITCOINCLI if they’re set (Wladimir J. van der Laan)

	#7226 301f16a Tests: Add more tests to p2p-fullblocktest (Suhas Daftuar)

	#7153 9ef7c54 [Tests] Add mempool_limit.py test (Jonas Schnelli)

	#7170 453c567 tests: Disable Tor interaction (Wladimir J. van der Laan)

	#7229 1ed938b [qa] wallet: Check if maintenance changes the balance (MarcoFalke)

	#7308 d513405 [Tests] Eliminate intermittent failures in sendheaders.py (Suhas Daftuar)

	#7468 947c4ff [rpc-tests] Change solve() to use rehash (Brad Andrews)

Miscellaneous

	#6213 e54ff2f [init] add -blockversion help and extend -upnp help (Diapolo)

	#5975 1fea667 Consensus: Decouple ContextualCheckBlockHeader from checkpoints (Jorge Timón)

	#6061 eba2f06 Separate Consensus::CheckTxInputs and GetSpendHeight in CheckInputs (Jorge Timón)

	#5994 786ed11 detach wallet from miner (Jonas Schnelli)

	#6387 11576a5 [bitcoin-cli] improve error output (Jonas Schnelli)

	#6401 6db53b4 Add BITCOIND_SIGTERM_TIMEOUT to OpenRC init scripts (Florian Schmaus)

	#6430 b01981e doc: add documentation for shared library libbitcoinconsensus (Braydon Fuller)

	#6372 dcc495e Update Linearize tool to support Windows paths; fix variable scope; update README and example configuration (Paul Georgiou)

	#6453 8fe5cce Separate core memory usage computation in core_memusage.h (Pieter Wuille)

	#6149 633fe10 Buffer log messages and explicitly open logs (Adam Weiss)

	#6488 7cbed7f Avoid leaking file descriptors in RegisterLoad (Casey Rodarmor)

	#6497 a2bf40d Make sure LogPrintf strings are line-terminated (Wladimir J. van der Laan)

	#6504 b6fee6b Rationalize currency unit to “BTC” (Ross Nicoll)

	#6507 9bb4dd8 Removed contrib/bitrpc (Casey Rodarmor)

	#6527 41d650f Use unique name for AlertNotify tempfile (Casey Rodarmor)

	#6561 e08a7d9 limitedmap fixes and tests (Casey Rodarmor)

	#6565 a6f2aff Make sure we re-acquire lock if a task throws (Casey Rodarmor)

	#6599 f4d88c4 Make sure LogPrint strings are line-terminated (Ross Nicoll)

	#6630 195942d Replace boost::reverse_lock with our own (Casey Rodarmor)

	#6103 13b8282 Add ZeroMQ notifications (João Barbosa)

	#6692 d5d1d2e devtools: don’t push if signing fails in github-merge (Wladimir J. van der Laan)

	#6728 2b0567b timedata: Prevent warning overkill (Wladimir J. van der Laan)

	#6713 f6ce59c SanitizeString: Allow hypen char (MarcoFalke)

	#5987 4899a04 Bugfix: Fix testnet-in-a-box use case (Luke-Jr)

	#6733 b7d78fd Simple benchmarking framework (Gavin Andresen)

	#6854 a092970 devtools: Add security-check.py (Wladimir J. van der Laan)

	#6790 fa1d252 devtools: add clang-format.py (MarcoFalke)

	#7114 f3d0fdd util: Don’t set strMiscWarning on every exception (Wladimir J. van der Laan)

	#7078 93e0514 uint256::GetCheapHash bigendian compatibility (arowser)

	#7094 34e02e0 Assert now > 0 in GetTime GetTimeMillis GetTimeMicros (Patrick Strateman)

Credits

Thanks to everyone who directly contributed to this release:

	accraze

	Adam Weiss

	Alex Morcos

	Alex van der Peet

	AlSzacrel

	Altoidnerd

	Andriy Voskoboinyk

	antonio-fr

	Arne Brutschy

	Ashley Holman

	Bob McElrath

	Braydon Fuller

	BtcDrak

	Casey Rodarmor

	centaur1

	Chris Kleeschulte

	Christian Decker

	Cory Fields

	crowning-

	daniel

	Daniel Cousens

	Daniel Kraft

	David Hill

	dexX7

	Diego Viola

	Elias Rohrer

	Eric Lombrozo

	Erik Mossberg

	Esteban Ordano

	EthanHeilman

	Florian Schmaus

	Forrest Voight

	Gavin Andresen

	Gregory Maxwell

	Gregory Sanders / instagibbs

	Ian T

	Irving Ruan

	Jacob Welsh

	James O’Beirne

	Jeff Garzik

	Johnathan Corgan

	Jonas Schnelli

	Jonathan Cross

	João Barbosa

	Jorge Timón

	Josh Lehan

	J Ross Nicoll

	kazcw

	Kevin Cooper

	lpescher

	Luke Dashjr

	MarcoFalke

	Mark Friedenbach

	Matt

	Matt Bogosian

	Matt Corallo

	Matt Quinn

	Micha

	Michael

	Michael Ford / fanquake

	Midnight Magic

	Mitchell Cash

	mrbandrews

	mruddy

	Nick

	Patrick Strateman

	Paul Georgiou

	Paul Rabahy

	Pavel Janík / paveljanik

	Pavel Vasin

	Pavol Rusnak

	Peter Josling

	Peter Todd

	Philip Kaufmann

	Pieter Wuille

	ptschip

	randy-waterhouse

	rion

	Ross Nicoll

	Ryan Havar

	Shaul Kfir

	Simon Males

	Stephen

	Suhas Daftuar

	tailsjoin

	Thomas Kerin

	Tom Harding

	tulip

	unsystemizer

	Veres Lajos

	Wladimir J. van der Laan

	xor-freenet

	Zak Wilcox

	zathras-crypto

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 Upgrading and downgrading

 Bitcoin Core version 0.10.1 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.10.1/

This is a new minor version release, bringing bug fixes and translation
updates. It is recommended to upgrade to this version.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

Upgrading and downgrading

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

Downgrade warning

Because release 0.10.0 and later makes use of headers-first synchronization and
parallel block download (see further), the block files and databases are not
backwards-compatible with pre-0.10 versions of Bitcoin Core or other software:

	Blocks will be stored on disk out of order (in the order they are
received, really), which makes it incompatible with some tools or
other programs. Reindexing using earlier versions will also not work
anymore as a result of this.

	The block index database will now hold headers for which no block is
stored on disk, which earlier versions won’t support.

If you want to be able to downgrade smoothly, make a backup of your entire data
directory. Without this your node will need start syncing (or importing from
bootstrap.dat) anew afterwards. It is possible that the data from a completely
synchronised 0.10 node may be usable in older versions as-is, but this is not
supported and may break as soon as the older version attempts to reindex.

This does not affect wallet forward or backward compatibility.

Notable changes

This is a minor release and hence there are no notable changes.
For the notable changes in 0.10, refer to the release notes for the
0.10.0 release at https://github.com/bitcoin/bitcoin/blob/v0.10.0/doc/release-notes.md

0.10.1 Change log

Detailed release notes follow. This overview includes changes that affect external
behavior, not code moves, refactors or string updates.

RPC:

	7f502be fix crash: createmultisig and addmultisigaddress

	eae305f Fix missing lock in submitblock

Block (database) and transaction handling:

	1d2cdd2 Fix InvalidateBlock to add chainActive.Tip to setBlockIndexCandidates

	c91c660 fix InvalidateBlock to repopulate setBlockIndexCandidates

	002c8a2 fix possible block db breakage during re-index

	a1f425b Add (optional) consistency check for the block chain data structures

	1c62e84 Keep mempool consistent during block-reorgs

	57d1f46 Fix CheckBlockIndex for reindex

	bac6fca Set nSequenceId when a block is fully linked

P2P protocol and network code:

	78f64ef don’t trickle for whitelisted nodes

	ca301bf Reduce fingerprinting through timestamps in ‘addr’ messages.

	200f293 Ignore getaddr messages on Outbound connections.

	d5d8998 Limit message sizes before transfer

	aeb9279 Better fingerprinting protection for non-main-chain getdatas.

	cf0218f Make addrman’s bucket placement deterministic (countermeasure 1 against eclipse attacks, see http://cs-people.bu.edu/heilman/eclipse/)

	0c6f334 Always use a 50% chance to choose between tried and new entries (countermeasure 2 against eclipse attacks)

	214154e Do not bias outgoing connections towards fresh addresses (countermeasure 2 against eclipse attacks)

	aa587d4 Scale up addrman (countermeasure 6 against eclipse attacks)

	139cd81 Cap nAttempts penalty at 8 and switch to pow instead of a division loop

Validation:

	d148f62 Acquire CCheckQueue’s lock to avoid race condition

Build system:

	8752b5c 0.10 fix for crashes on OSX 10.6

Wallet:

	N/A

GUI:

	2c08406 some mac specifiy cleanup (memory handling, unnecessary code)

	81145a6 fix OSX dock icon window reopening

	786cf72 fix a issue where “command line options”-action overwrite “Preference”-action (on OSX)

Tests:

	1117378 add RPC test for InvalidateBlock

Miscellaneous:

	c9e022b Initialization: set Boost path locale in main thread

	23126a0 Sanitize command strings before logging them.

	323de27 Initialization: setup environment before starting Qt tests

	7494e09 Initialization: setup environment before starting tests

	df45564 Initialization: set fallback locale as environment variable

Credits

Thanks to everyone who directly contributed to this release:

	Alex Morcos

	Cory Fields

	dexX7

	fsb4000

	Gavin Andresen

	Gregory Maxwell

	Ivan Pustogarov

	Jonas Schnelli

	Matt Corallo

	mrbandrews

	Pieter Wuille

	Ruben de Vries

	Suhas Daftuar

	Wladimir J. van der Laan

And all those who contributed additional code review and/or security research:

	21E14

	Alison Kendler

	Aviv Zohar

	Ethan Heilman

	Evil-Knievel

	fanquake

	Jeff Garzik

	Jonas Nick

	Luke Dashjr

	Patrick Strateman

	Philip Kaufmann

	Sergio Demian Lerner

	Sharon Goldberg

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Bitcoin version 0.5.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.5.0/

The major change for this release is a completely new graphical interface that uses the Qt user interface toolkit.

This release include German, Spanish, Spanish-Castilian, Norwegian and Dutch translations. More translations are welcome; join the project at Transifex if you can help:
https://www.transifex.net/projects/p/bitcoin/

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

For Ubuntu users, there is a new ppa maintained by Matt Corallo which you can add to your system so that it will automatically keep bitcoin up-to-date. Just type “sudo apt-add-repository ppa:bitcoin/bitcoin” in your terminal, then install the bitcoin-qt package.

MAJOR BUG FIX (CVE-2011-4447)

The wallet encryption feature introduced in Bitcoin version 0.4.0 did not sufficiently secure the private keys. An attacker who
managed to get a copy of your encrypted wallet.dat file might be able to recover some or all of the unencrypted keys and steal the
associated coins.

If you have a previously encrypted wallet.dat, the first time you run bitcoin-qt or bitcoind the wallet will be rewritten, Bitcoin will
shut down, and you will be prompted to restart it to run with the new, properly encrypted file.

If you had a previously encrypted wallet.dat that might have been copied or stolen (for example, you backed it up to a public
location) you should send all of your bitcoins to yourself using a new bitcoin address and stop using any previously generated addresses.

Wallets encrypted with this version of Bitcoin are written properly.

Technical note: the encrypted wallet’s ‘keypool’ will be regenerated the first time you request a new bitcoin address; to be certain that the
new private keys are properly backed up you should:

	Run Bitcoin and let it rewrite the wallet.dat file

	Run it again, then ask it for a new bitcoin address.
Bitcoin-Qt: Address Book, then New Address...
bitcoind: run the ‘walletpassphrase’ RPC command to unlock the wallet, then run the ‘getnewaddress’ RPC command.

	If your encrypted wallet.dat may have been copied or stolen, send all of your bitcoins to the new bitcoin address.

	Shut down Bitcoin, then backup the wallet.dat file.
IMPORTANT: be sure to request a new bitcoin address before backing up, so that the ‘keypool’ is regenerated and backed up.

“Security in depth” is always a good idea, so choosing a secure location for the backup and/or encrypting the backup before uploading it is recommended. And as in previous releases, if your machine is infected by malware there are several ways an attacker might steal your bitcoins.

Thanks to Alan Reiner (etotheipi) for finding and reporting this bug.

MAJOR GUI CHANGES

“Splash” graphics at startup that show address/wallet/blockchain loading progress.

“Synchronizing with network” progress bar to show block-chain download progress.

Icons at the bottom of the window that show how well connected you are to the network, with tooltips to display details.

Drag and drop support for bitcoin: URIs on web pages.

Export transactions as a .csv file.

Many other GUI improvements, large and small.

RPC CHANGES

getmemorypool : new RPC command, provides everything needed to construct a block with a custom generation transaction and submit a solution

listsinceblock : new RPC command, list transactions since given block

signmessage/verifymessage : new RPC commands to sign a message with one of your private keys or verify that a message signed by the private key associated with a bitcoin address.

GENERAL CHANGES

Faster initial block download.

 <no title>

 Changes:

	Fixed a wallet.dat compatibility problem if you downgraded from 0.3.17 and then upgraded again

	IsStandard() check to only include known transaction types in blocks

	Jgarzik’s optimisation to speed up the initial block download a little

The main addition in this release is the Accounts-Based JSON-RPC commands that Gavin’s been working on (more details at http://www.bitcoin.org/smf/index.php?topic=1886.0).

	getaccountaddress

	sendfrom

	move

	getbalance

	listtransactions

 How to Upgrade

 Bitcoin Core version 0.9.4 is now available from:

https://bitcoin.org/bin/0.9.4/

This is a new minor version release, bringing only bug fixes and updated
translations. Upgrading to this release is recommended.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait until it has completely
shut down (which might take a few minutes for older versions), then run the
installer (on Windows) or just copy over /Applications/Bitcoin-Qt (on Mac) or
bitcoind/bitcoin-qt (on Linux).

OpenSSL Warning

OpenSSL 1.0.0p / 1.0.1k was recently released and is being pushed out by
various operating system maintainers. Review by Gregory Maxwell determined that
this update is incompatible with the Bitcoin system and could lead to consensus
forks.

Bitcoin Core released binaries from https://bitcoin.org are unaffected,
as are any built with the gitian deterministic build system.

However, if you are running either

	The Ubuntu PPA from https://launchpad.net/~bitcoin/+archive/ubuntu/bitcoin

	A third-party or self-compiled Bitcoin Core

upgrade to Bitcoin Core 0.9.4, which includes a workaround, before updating
OpenSSL.

The incompatibility is due to the OpenSSL update changing the
behavior of ECDSA validation to reject any signature which is
not encoded in a very rigid manner. This was a result of
OpenSSL’s change for CVE-2014-8275 “Certificate fingerprints
can be modified”.

We are specifically aware of potential hard-forks due to signature
encoding handling and had been hoping to close them via BIP62 in 0.10.
BIP62’s purpose is to improve transaction malleability handling and
as a side effect rigidly defines the encoding for signatures, but the
overall scope of BIP62 has made it take longer than we’d like to
deploy.

0.9.4 changelog

Validation:

	b8e81b7 consensus: guard against openssl’s new strict DER checks

	60c51f1 fail immediately on an empty signature

	037bfef Improve robustness of DER recoding code

Command-line options:

	cd5164a Make -proxy set all network types, avoiding a connect leak.

P2P:

	bb424e4 Limit the number of new addressses to accumulate

RPC:

	0a94661 Disable SSLv3 (in favor of TLS) for the RPC client and server.

Build system:

	f047dfa gitian: openssl-1.0.1i.tar.gz -> openssl-1.0.1k.tar.gz

	5b9f78d build: Fix OSX build when using Homebrew and qt5

	ffab1dd Keep symlinks when copying into .app bundle

	613247f osx: fix signing to make Gatekeeper happy (again)

Miscellaneous:

	25b49b5 Refactor -alertnotify code

	2743529 doc: Add instructions for consistent Mac OS X build names

Credits

Thanks to who contributed to this release, at least:

	Cory Fields

	Gavin Andresen

	Gregory Maxwell

	Jeff Garzik

	Luke Dashjr

	Matt Corallo

	Pieter Wuille

	Saivann

	Sergio Demian Lerner

	Wladimir J. van der Laan

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Never released

 How to Upgrade

 Bitcoin-Qt version 0.8.5 is now available from:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.8.5/

This is a maintenance release to fix a critical bug;
we urge all users to upgrade.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
/Applications/Bitcoin-Qt (on Mac) or bitcoind/bitcoin-qt (on Linux).

If you are upgrading from version 0.7.2 or earlier, the first time you
run 0.8.5 your blockchain files will be re-indexed, which will take
anywhere from 30 minutes to several hours, depending on the speed of
your machine.

0.8.5 Release notes

Bugs fixed

Transactions with version numbers larger than 0x7fffffff were
incorrectly being relayed and included in blocks.

Blocks containing transactions with version numbers larger
than 0x7fffffff caused the code that checks for LevelDB database
inconsistencies at startup to erroneously report database
corruption and suggest that you reindex your database.

This release also contains a non-critical fix to the code that
enforces BIP 34 (block height in the coinbase transaction).

–

Thanks to Gregory Maxwell and Pieter Wuille for quickly
identifying and fixing the transaction version number bug.

 Compatibility

 Bitcoin Core version 0.14.0 is now available from:

https://bitcoin.org/bin/bitcoin-core-0.14.0/

This is a new major version release, including new features, various bugfixes
and performance improvements, as well as updated translations.

Please report bugs using the issue tracker at github:

https://github.com/bitcoin/bitcoin/issues

To receive security and update notifications, please subscribe to:

https://bitcoincore.org/en/list/announcements/join/

Compatibility

Bitcoin Core is extensively tested on multiple operating systems using
the Linux kernel, macOS 10.8+, and Windows Vista and later.

Microsoft ended support for Windows XP on April 8th, 2014 [https://www.microsoft.com/en-us/WindowsForBusiness/end-of-xp-support],
No attempt is made to prevent installing or running the software on Windows XP, you
can still do so at your own risk but be aware that there are known instabilities and issues.
Please do not report issues about Windows XP to the issue tracker.

Bitcoin Core should also work on most other Unix-like systems but is not
frequently tested on them.

Notable changes

Performance Improvements

Validation speed and network propagation performance have been greatly
improved, leading to much shorter sync and initial block download times.

	The script signature cache has been reimplemented as a “cuckoo cache”,
allowing for more signatures to be cached and faster lookups.

	Assumed-valid blocks have been introduced which allows script validation to
be skipped for ancestors of known-good blocks, without changing the security
model. See below for more details.

	In some cases, compact blocks are now relayed before being fully validated as
per BIP152.

	P2P networking has been refactored with a focus on concurrency and
throughput. Network operations are no longer bottlenecked by validation. As a
result, block fetching is several times faster than previous releases in many
cases.

	The UTXO cache now claims unused mempool memory. This speeds up initial block
download as UTXO lookups are a major bottleneck there, and there is no use for
the mempool at that stage.

Manual Pruning

Bitcoin Core has supported automatically pruning the blockchain since 0.11. Pruning
the blockchain allows for significant storage space savings as the vast majority of
the downloaded data can be discarded after processing so very little of it remains
on the disk.

Manual block pruning can now be enabled by setting -prune=1. Once that is set,
the RPC command pruneblockchain can be used to prune the blockchain up to the
specified height or timestamp.

getinfo Deprecated

The getinfo RPC command has been deprecated. Each field in the RPC call
has been moved to another command’s output with that command also giving
additional information that getinfo did not provide. The following table
shows where each field has been moved to:

|getinfo field | Moved to |
|——————|——————————————-|
"version" | getnetworkinfo()["version"]
"protocolversion"| getnetworkinfo()["protocolversion"]
"walletversion" | getwalletinfo()["walletversion"]
"balance" | getwalletinfo()["balance"]
"blocks" | getblockchaininfo()["blocks"]
"timeoffset" | getnetworkinfo()["timeoffset"]
"connections" | getnetworkinfo()["connections"]
"proxy" | getnetworkinfo()["networks"][0]["proxy"]
"difficulty" | getblockchaininfo()["difficulty"]
"testnet" | getblockchaininfo()["chain"] == "test"
"keypoololdest" | getwalletinfo()["keypoololdest"]
"keypoolsize" | getwalletinfo()["keypoolsize"]
"unlocked_until" | getwalletinfo()["unlocked_until"]
"paytxfee" | getwalletinfo()["paytxfee"]
"relayfee" | getnetworkinfo()["relayfee"]
"errors" | getnetworkinfo()["warnings"]

ZMQ On Windows

Previously the ZeroMQ notification system was unavailable on Windows
due to various issues with ZMQ. These have been fixed upstream and
now ZMQ can be used on Windows. Please see this document [https://github.com/bitcoin/bitcoin/blob/master/doc/zmq.md] for
help with using ZMQ in general.

Nested RPC Commands in Debug Console

The ability to nest RPC commands has been added to the debug console. This
allows users to have the output of a command become the input to another
command without running the commands separately.

The nested RPC commands use bracket syntax (i.e. getwalletinfo()) and can
be nested (i.e. getblock(getblockhash(1))). Simple queries can be
done with square brackets where object values are accessed with either an
array index or a non-quoted string (i.e. listunspent()[0][txid]). Both
commas and spaces can be used to separate parameters in both the bracket syntax
and normal RPC command syntax.

Network Activity Toggle

A RPC command and GUI toggle have been added to enable or disable all p2p
network activity. The network status icon in the bottom right hand corner
is now the GUI toggle. Clicking the icon will either enable or disable all
p2p network activity. If network activity is disabled, the icon will
be grayed out with an X on top of it.

Additionally the setnetworkactive RPC command has been added which does
the same thing as the GUI icon. The command takes one boolean parameter,
true enables networking and false disables it.

Out-of-sync Modal Info Layer

When Bitcoin Core is out-of-sync on startup, a semi-transparent information
layer will be shown over top of the normal display. This layer contains
details about the current sync progress and estimates the amount of time
remaining to finish syncing. This layer can also be hidden and subsequently
unhidden by clicking on the progress bar at the bottom of the window.

Support for JSON-RPC Named Arguments

Commands sent over the JSON-RPC interface and through the bitcoin-cli binary
can now use named arguments. This follows the JSON-RPC specification [http://www.jsonrpc.org/specification]
for passing parameters by-name with an object.

bitcoin-cli has been updated to support this by parsing name=value arguments
when the -named option is given.

Some examples:

src/bitcoin-cli -named help command="help"
src/bitcoin-cli -named getblockhash height=0
src/bitcoin-cli -named getblock blockhash=000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
src/bitcoin-cli -named sendtoaddress address="(snip)" amount="1.0" subtractfeefromamount=true

The order of arguments doesn’t matter in this case. Named arguments are also
useful to leave out arguments that should stay at their default value. The
rarely-used arguments comment and comment_to to sendtoaddress, for example, can
be left out. However, this is not yet implemented for many RPC calls, this is
expected to land in a later release.

The RPC server remains fully backwards compatible with positional arguments.

Opt into RBF When Sending

A new startup option, -walletrbf, has been added to allow users to have all
transactions sent opt into RBF support. The default value for this option is
currently false, so transactions will not opt into RBF by default. The new
bumpfee RPC can be used to replace transactions that opt into RBF.

Sensitive Data Is No Longer Stored In Debug Console History

The debug console maintains a history of previously entered commands that can be
accessed by pressing the Up-arrow key so that users can easily reuse previously
entered commands. Commands which have sensitive information such as passphrases and
private keys will now have a (...) in place of the parameters when accessed through
the history.

Retaining the Mempool Across Restarts

The mempool will be saved to the data directory prior to shutdown
to a mempool.dat file. This file preserves the mempool so that when the node
restarts the mempool can be filled with transactions without waiting for new transactions
to be created. This will also preserve any changes made to a transaction through
commands such as prioritisetransaction so that those changes will not be lost.

Final Alert

The Alert System was disabled and deprecated [https://bitcoin.org/en/alert/2016-11-01-alert-retirement] in Bitcoin Core 0.12.1 and removed in 0.13.0.
The Alert System was retired with a maximum sequence final alert which causes any nodes
supporting the Alert System to display a static hard-coded “Alert Key Compromised” message which also
prevents any other alerts from overriding it. This final alert is hard-coded into this release
so that all old nodes receive the final alert.

GUI Changes

	After resetting the options by clicking the Reset Options button
in the options dialog or with the -resetguioptions startup option,
the user will be prompted to choose the data directory again. This
is to ensure that custom data directories will be kept after the
option reset which clears the custom data directory set via the choose
datadir dialog.

	Multiple peers can now be selected in the list of peers in the debug
window. This allows for users to ban or disconnect multiple peers
simultaneously instead of banning them one at a time.

	An indicator has been added to the bottom right hand corner of the main
window to indicate whether the wallet being used is a HD wallet. This
icon will be grayed out with an X on top of it if the wallet is not a
HD wallet.

Low-level RPC changes

	importprunedfunds only accepts two required arguments. Some versions accept
an optional third arg, which was always ignored. Make sure to never pass more
than two arguments.

	The first boolean argument to getaddednodeinfo has been removed. This is
an incompatible change.

	RPC command getmininginfo loses the “testnet” field in favor of the more
generic “chain” (which has been present for years).

	A new RPC command preciousblock has been added which marks a block as
precious. A precious block will be treated as if it were received earlier
than a competing block.

	A new RPC command importmulti has been added which receives an array of
JSON objects representing the intention of importing a public key, a
private key, an address and script/p2sh

	Use of getrawtransaction for retrieving confirmed transactions with unspent
outputs has been deprecated. For now this will still work, but in the future
it may change to only be able to retrieve information about transactions in
the mempool or if txindex is enabled.

	A new RPC command getmemoryinfo has been added which will return information
about the memory usage of Bitcoin Core. This was added in conjunction with
optimizations to memory management. See Pull #8753 [https://github.com/bitcoin/bitcoin/pull/8753]
for more information.

	A new RPC command bumpfee has been added which allows replacing an
unconfirmed wallet transaction that signaled RBF (see the -walletrbf
startup option above) with a new transaction that pays a higher fee, and
should be more likely to get confirmed quickly.

HTTP REST Changes

	UTXO set query (GET /rest/getutxos/<checkmempool>/<txid>-<n>/<txid>-<n> /.../<txid>-<n>.<bin|hex|json>) responses were changed to return status
code HTTP_BAD_REQUEST (400) instead of HTTP_INTERNAL_SERVER_ERROR (500)
when requests contain invalid parameters.

Minimum Fee Rate Policies

Since the changes in 0.12 to automatically limit the size of the mempool and improve the performance of block creation in mining code it has not been important for relay nodes or miners to set -minrelaytxfee. With this release the following concepts that were tied to this option have been separated out:

	incremental relay fee used for calculating BIP 125 replacement and mempool limiting. (1000 satoshis/kB)

	calculation of threshold for a dust output. (effectively 3 * 1000 satoshis/kB)

	minimum fee rate of a package of transactions to be included in a block created by the mining code. If miners wish to set this minimum they can use the new -blockmintxfee option. (defaults to 1000 satoshis/kB)

The -minrelaytxfee option continues to exist but is recommended to be left unset.

Fee Estimation Changes

	Since 0.13.2 fee estimation for a confirmation target of 1 block has been
disabled. The fee slider will no longer be able to choose a target of 1 block.
This is only a minor behavior change as there was often insufficient
data for this target anyway. estimatefee 1 will now always return -1 and
estimatesmartfee 1 will start searching at a target of 2.

	The default target for fee estimation is changed to 6 blocks in both the GUI
(previously 25) and for RPC calls (previously 2).

Removal of Priority Estimation

	Estimation of “priority” needed for a transaction to be included within a target
number of blocks has been removed. The RPC calls are deprecated and will either
return -1 or 1e24 appropriately. The format for fee_estimates.dat has also
changed to no longer save these priority estimates. It will automatically be
converted to the new format which is not readable by prior versions of the
software.

	Support for “priority” (coin age) transaction sorting for mining is
considered deprecated in Core and will be removed in the next major version.
This is not to be confused with the prioritisetransaction RPC which will remain
supported by Core for adding fee deltas to transactions.

P2P connection management

	Peers manually added through the -addnode option or addnode RPC now have their own
limit of eight connections which does not compete with other inbound or outbound
connection usage and is not subject to the limitation imposed by the -maxconnections
option.

	New connections to manually added peers are performed more quickly.

Introduction of assumed-valid blocks

	A significant portion of the initial block download time is spent verifying
scripts/signatures. Although the verification must pass to ensure the security
of the system, no other result from this verification is needed: If the node
knew the history of a given block were valid it could skip checking scripts
for its ancestors.

	A new configuration option ‘assumevalid’ is provided to express this knowledge
to the software. Unlike the ‘checkpoints’ in the past this setting does not
force the use of a particular chain: chains that are consistent with it are
processed quicker, but other chains are still accepted if they’d otherwise
be chosen as best. Also unlike ‘checkpoints’ the user can configure which
block history is assumed true, this means that even outdated software can
sync more quickly if the setting is updated by the user.

	Because the validity of a chain history is a simple objective fact it is much
easier to review this setting. As a result the software ships with a default
value adjusted to match the current chain shortly before release. The use
of this default value can be disabled by setting -assumevalid=0

Fundrawtransaction change address reuse

	Before 0.14, fundrawtransaction was by default wallet stateless. In
almost all cases fundrawtransaction does add a change-output to the
outputs of the funded transaction. Before 0.14, the used keypool key was
never marked as change-address key and directly returned to the keypool
(leading to address reuse). Before 0.14, calling getnewaddress
directly after fundrawtransaction did generate the same address as
the change-output address.

	Since 0.14, fundrawtransaction does reserve the change-output-key from
the keypool by default (optional by setting reserveChangeKey, default =
true)

	Users should also consider using getrawchangeaddress() in conjunction
with fundrawtransaction‘s changeAddress option.

Unused mempool memory used by coincache

	Before 0.14, memory reserved for mempool (using the -maxmempool option)
went unused during initial block download, or IBD. In 0.14, the UTXO DB cache
(controlled with the -dbcache option) borrows memory from the mempool
when there is extra memory available. This may result in an increase in
memory usage during IBD for those previously relying on only the -dbcache
option to limit memory during that time.

0.14.0 Change log

Detailed release notes follow. This overview includes changes that affect
behavior, not code moves, minor refactors and string updates. For convenience
in locating the code changes and accompanying discussion, both the pull request
and git merge commit are mentioned.

RPC and other APIs

	#8421 b77bb95 httpserver: drop boost dependency (theuni)

	#8638 f061415 rest.cpp: change HTTP_INTERNAL_SERVER_ERROR to HTTP_BAD_REQUEST (djpnewton)

	#8272 91990ee Make the dummy argument to getaddednodeinfo optional (sipa)

	#8722 bb843ad bitcoin-cli: More detailed error reporting (laanwj)

	#6996 7f71a3c Add preciousblock RPC (sipa)

	#8788 97c7f73 Give RPC commands more information about the RPC request (jonasschnelli)

	#7948 5d2c8e5 Augment getblockchaininfo bip9_softforks data (mruddy)

	#8980 0e22855 importmulti: Avoid using boost::variant::operator!=, which is only in newer boost versions (luke-jr)

	#9025 4d8558a Getrawtransaction should take a bool for verbose (jnewbery)

	#8811 5754e03 Add support for JSON-RPC named arguments (laanwj)

	#9520 2456a83 Deprecate non-txindex getrawtransaction and better warning (sipa)

	#9518 a65ced1 Return height of last block pruned by pruneblockchain RPC (ryanofsky)

	#9222 7cb024e Add ‘subtractFeeFromAmount’ option to ‘fundrawtransaction’ (dooglus)

	#8456 2ef52d3 Simplified bumpfee command (mrbandrews)

	#9516 727a798 Bug-fix: listsinceblock: use fork point as reference for blocks in reorg’d chains (kallewoof)

	#9640 7bfb770 Bumpfee: bugfixes for error handling and feerate calculation (sdaftuar)

	#9673 8d6447e Set correct metadata on bumpfee wallet transactions (ryanofsky)

	#9650 40f7e27 Better handle invalid parameters to signrawtransaction (TheBlueMatt)

	#9682 edc9e63 Require timestamps for importmulti keys (ryanofsky)

	#9108 d8e8b06 Use importmulti timestamp when importing watch only keys (on top of #9682) (ryanofsky)

	#9756 7a93af8 Return error when importmulti called with invalid address (ryanofsky)

	#9778 ad168ef Add two hour buffer to manual pruning (morcos)

	#9761 9828f9a Use 2 hour grace period for key timestamps in importmulti rescans (ryanofsky)

	#9474 48d7e0d Mark the minconf parameter to move as ignored (sipa)

	#9619 861cb0c Bugfix: RPC/Mining: GBT should return 1 MB sizelimit before segwit activates (luke-jr)

	#9773 9072395 Return errors from importmulti if complete rescans are not successful (ryanofsky)

Block and transaction handling

	#8391 37d83bb Consensus: Remove ISM (NicolasDorier)

	#8365 618c9dd Treat high-sigop transactions as larger rather than rejecting them (sipa)

	#8814 14b7b3f wallet, policy: ParameterInteraction: Don’t allow 0 fee (MarcoFalke)

	#8515 9bdf526 A few mempool removal optimizations (sipa)

	#8448 101c642 Store mempool and prioritization data to disk (sipa)

	#7730 3c03dc2 Remove priority estimation (morcos)

	#9111 fb15610 Remove unused variable UNLIKELY_PCT from fees.h (fanquake)

	#9133 434e683 Unset fImporting for loading mempool (morcos)

	#9179 b9a87b4 Set DEFAULT_LIMITFREERELAY = 0 kB/minute (MarcoFalke)

	#9239 3fbf079 Disable fee estimates for 1-block target (morcos)

	#7562 1eef038 Bump transaction version default to 2 (btcdrak)

	#9313,#9367 If we don’t allow free txs, always send a fee filter (morcos)

	#9346 b99a093 Batch construct batches (sipa)

	#9262 5a70572 Prefer coins that have fewer ancestors, sanity check txn before ATMP (instagibbs)

	#9288 1ce7ede Fix a bug if the min fee is 0 for FeeFilterRounder (morcos)

	#9395 0fc1c31 Add test for -walletrejectlongchains (morcos)

	#9107 7dac1e5 Safer modify new coins (morcos)

	#9312 a72f76c Increase mempool expiry time to 2 weeks (morcos)

	#8610 c252685 Share unused mempool memory with coincache (sipa)

	#9138 f646275 Improve fee estimation (morcos)

	#9408 46b249e Allow shutdown during LoadMempool, dump only when necessary (jonasschnelli)

	#9310 8c87f17 Assert FRESH validity in CCoinsViewCache::BatchWrite (ryanofsky)

	#7871 e2e624d Manual block file pruning (mrbandrews)

	#9507 0595042 Fix use-after-free in CTxMemPool::removeConflicts() (sdaftuar)

	#9380 dd98f04 Separate different uses of minimum fees (morcos)

	#9596 71148b8 bugfix save feeDelta instead of priorityDelta in DumpMempool (morcos)

	#9371 4a1dc35 Notify on removal (morcos)

	#9519 9b4d267 Exclude RBF replacement txs from fee estimation (morcos)

	#8606 e2a1a1e Fix some locks (sipa)

	#8681 6898213 Performance Regression Fix: Pre-Allocate txChanged vector (JeremyRubin)

	#8223 744d265 c++11: Use std::unique_ptr for block creation (domob1812)

	#9125 7490ae8 Make CBlock a vector of shared_ptr of CTransactions (sipa)

	#8930 93566e0 Move orphan processing to ActivateBestChain (TheBlueMatt)

	#8580 46904ee Make CTransaction actually immutable (sipa)

	#9240 a1dcf2e Remove txConflicted (morcos)

	#8589 e8cfe1e Inline CTxInWitness inside CTxIn (sipa)

	#9349 2db4cbc Make CScript (and prevector) c++11 movable (sipa)

	#9252 ce5c1f4 Release cs_main before calling ProcessNewBlock, or processing headers (cmpctblock handling) (sdaftuar)

	#9283 869781c A few more CTransactionRef optimizations (sipa)

	#9499 9c9af5a Use recent-rejects, orphans, and recently-replaced txn for compact-block-reconstruction (TheBlueMatt)

	#9813 3972a8e Read/write mempool.dat as a binary (paveljanik)

P2P protocol and network code

	#8128 1030fa7 Turn net structures into dumb storage classes (theuni)

	#8282 026c6ed Feeler connections to increase online addrs in the tried table (EthanHeilman)

	#8462 53f8f22 Move AdvertiseLocal debug output to net category (Mirobit)

	#8612 84decb5 Check for compatibility with download in FindNextBlocksToDownload (sipa)

	#8594 5b2ea29 Do not add random inbound peers to addrman (gmaxwell)

	#8085 6423116 Begin encapsulation (theuni)

	#8715 881d7ea only delete CConnman if it’s been created (theuni)

	#8707 f07424a Fix maxuploadtarget setting (theuni)

	#8661 d2e4655 Do not set an addr time penalty when a peer advertises itself (gmaxwell)

	#8822 9bc6a6b Consistent checksum handling (laanwj)

	#8936 1230890 Report NodeId in misbehaving debug (rebroad)

	#8968 3cf496d Don’t hold cs_main when calling ProcessNewBlock from a cmpctblock (TheBlueMatt)

	#9002 e1d1f57 Make connect=0 disable automatic outbound connections (gmaxwell)

	#9050 fcf61b8 Make a few values immutable, and use deterministic randomness for the localnonce (theuni)

	#8969 3665483 Decouple peer-processing-logic from block-connection-logic (#2) (TheBlueMatt)

	#8708 c8c572f have CConnman handle message sending (theuni)

	#8709 1e50d22 Allow filterclear messages for enabling TX relay only (rebroad)

	#9045 9f554e0 Hash P2P messages as they are received instead of at process-time (TheBlueMatt)

	#9026 dc6b940 Fix handling of invalid compact blocks (sdaftuar)

	#8996 ab914a6 Network activity toggle (luke-jr)

	#9131 62af164 fNetworkActive is not protected by a lock, use an atomic (jonasschnelli)

	#8872 0c577f2 Remove block-request logic from INV message processing (TheBlueMatt)

	#8690 791b58d Do not fully sort all nodes for addr relay (sipa)

	#9128 76fec09 Decouple CConnman and message serialization (theuni)

	#9226 3bf06e9 Remove fNetworkNode and pnodeLocalHost (gmaxwell)

	#9352 a7f7651 Attempt reconstruction from all compact block announcements (sdaftuar)

	#9319 a55716a Break addnode out from the outbound connection limits (gmaxwell)

	#9261 2742568 Add unstored orphans with rejected parents to recentRejects (morcos)

	#9441 8b66bf7 Massive speedup. Net locks overhaul (theuni)

	#9375 3908fc4 Relay compact block messages prior to full block connection (TheBlueMatt)

	#9400 8a445c5 Set peers as HB peers upon full block validation (instagibbs)

	#9561 6696b46 Wake message handling thread when we receive a new block (TheBlueMatt)

	#9535 82274c0 Split CNode::cs_vSend: message processing and message sending (TheBlueMatt)

	#9606 3f9f962 Consistently use GetTimeMicros() for inactivity checks (sdaftuar)

	#9594 fd70211 Send final alert message to older peers after connecting (gmaxwell)

	#9626 36966a1 Clean up a few CConnman cs_vNodes/CNode things (TheBlueMatt)

	#9609 4966917 Fix remaining net assertions (theuni)

	#9671 7821db3 Fix super-unlikely race introduced in 236618061a445d2cb11e72 (TheBlueMatt)

	#9730 33f3b21 Remove bitseed.xf2.org form the dns seed list (jonasschnelli)

	#9698 2447c10 Fix socket close race (theuni)

	#9708 a06ede9 Clean up all known races/platform-specific UB at the time PR was opened (TheBlueMatt)

	#9715 b08656e Disconnect peers which we do not receive VERACKs from within 60 sec (TheBlueMatt)

	#9720 e87ce95 Fix banning and disallow sending messages before receiving verack (theuni)

	#9268 09c4fd1 Fix rounding privacy leak introduced in #9260 (TheBlueMatt)

	#9075 9346f84 Decouple peer-processing-logic from block-connection-logic (#3) (TheBlueMatt)

	#8688 047ded0 Move static global randomizer seeds into CConnman (sipa)

	#9289 d9ae1ce net: drop boost::thread_group (theuni)

Validation

	#9014 d04aeba Fix block-connection performance regression (TheBlueMatt)

	#9299 d52ce89 Remove no longer needed check for premature v2 txs (morcos)

	#9273 b68685a Remove unused CDiskBlockPos* argument from ProcessNewBlock (TheBlueMatt)

	#8895 b83264d Better SigCache Implementation (JeremyRubin)

	#9490 e126d0c Replace FindLatestBefore used by importmulti with FindEarliestAtLeast (gmaxwell)

	#9484 812714f Introduce assumevalid setting to skip validation presumed valid scripts (gmaxwell)

	#9511 7884956 Don’t overwrite validation state with corruption check (morcos)

	#9765 1e92e04 Harden against mistakes handling invalid blocks (sdaftuar)

	#9779 3c02b95 Update nMinimumChainWork and defaultAssumeValid (gmaxwell)

	#8524 19b0f33 Precompute sighashes (sipa)

	#9791 1825a03 Avoid VLA in hash.h (sipa)

Build system

	#8238 6caf3ee ZeroMQ 4.1.5 && ZMQ on Windows (fanquake)

	#8520 b40e19c Remove check for openssl/ec.h (laanwj)

	#8617 de07fdc Include instructions to extract Mac OS X SDK on Linux using 7zip and SleuthKit (luke-jr)

	#8566 7b98895 Easy to use gitian building script (achow101)

	#8604 f256843 build,doc: Update for 0.13.0+ and OpenBSD 5.9 (laanwj)

	#8640 2663e51 depends: Remove Qt46 package (fanquake)

	#8645 8ea4440 Remove unused Qt 4.6 patch (droark)

	#8608 7e9ab95 Install manpages via make install, also add some autogenerated manpages (nomnombtc)

	#8781 ca69ef4 contrib: delete qt_translations.py (MarcoFalke)

	#8783 64dc645 share: remove qt/protobuf.pri (MarcoFalke)

	#8423 3166dff depends: expat 2.2.0, ccache 3.3.1, fontconfig 2.12.1 (fanquake)

	#8791 b694b0d travis: cross-mac: explicitly enable gui (MarcoFalke)

	#8820 dc64141 depends: Fix Qt compilation with Xcode 8 (fanquake)

	#8730 489a6ab depends: Add libevent compatibility patch for windows (laanwj)

	#8819 c841816 depends: Boost 1.61.0 (fanquake)

	#8826 f560d95 Do not include env_win.cc on non-Windows systems (paveljanik)

	#8948 e077e00 Reorder Windows gitian build order to match Linux (Michagogo)

	#8568 078900d new var DIST_CONTRIB adds useful things for packagers from contrib (nomnombtc)

	#9114 21e6c6b depends: Set OSX_MIN_VERSION to 10.8 (fanquake)

	#9140 018a4eb Bugfix: Correctly replace generated headers and fail cleanly (luke-jr)

	#9156 a8b2a82 Add compile and link options echo to configure (jonasschnelli)

	#9393 03d85f6 Include cuckoocache header in Makefile (MarcoFalke)

	#9420 bebe369 Fix linker error when configured with –enable-lcov (droark)

	#9412 53442af Fix ‘make deploy’ for OSX (jonasschnelli)

	#9475 7014506 Let autoconf detect presence of EVP_MD_CTX_new (luke-jr)

	#9513 bbf193f Fix qt distdir builds (theuni)

	#9471 ca615e6 depends: libevent 2.1.7rc (fanquake)

	#9468 f9117f2 depends: Dependency updates for 0.14.0 (fanquake)

	#9469 01c4576 depends: Qt 5.7.1 (fanquake)

	#9574 5ac6687 depends: Fix QT build on OSX (fanquake)

	#9646 720b579 depends: Fix cross build for qt5.7 (theuni)

	#9705 6a55515 Add options to override BDB cflags/libs (laanwj)

	#8249 4e1567a Enable (and check for) 64-bit ASLR on Windows (laanwj)

	#9758 476cc47 Selectively suppress deprecation warnings (jonasschnelli)

	#9783 6d61a2b release: bump gitian descriptors for a new 0.14 package cache (theuni)

	#9789 749fe95 build: add –enable-werror and warn on vla’s (theuni)

	#9831 99fd85c build: force a c++ standard to be specified (theuni)

GUI

	#8192 c503863 Remove URLs from About dialog translations (fanquake)

	#8540 36404ae Fix random segfault when closing “Choose data directory” dialog (laanwj)

	#8517 2468292 Show wallet HD state in statusbar (jonasschnelli)

	#8463 62a5a8a Remove Priority from coincontrol dialog (MarcoFalke)

	#7579 0606f95 Show network/chain errors in the GUI (jonasschnelli)

	#8583 c19f8a4 Show XTHIN in GUI (rebroad)

	#7783 4335d5a RPC-Console: support nested commands and simple value queries (jonasschnelli)

	#8672 6052d50 Show transaction size in transaction details window (Cocosoft)

	#8777 fec6af7 WalletModel: Expose disablewallet (MarcoFalke)

	#8371 24f72e9 Add out-of-sync modal info layer (jonasschnelli)

	#8885 b2fec4e Fix ban from qt console (theuni)

	#8821 bf8e68a sync-overlay: Don’t block during reindex (MarcoFalke)

	#8906 088d1f4 sync-overlay: Don’t show progress twice (MarcoFalke)

	#8918 47ace42 Add “Copy URI” to payment request context menu (luke-jr)

	#8925 f628d9a Display minimum ping in debug window (rebroad)

	#8774 3e942a7 Qt refactors to better abstract wallet access (luke-jr)

	#8985 7b1bfa3 Use pindexBestHeader instead of setBlockIndexCandidates for NotifyHeaderTip() (jonasschnelli)

	#8989 d2143dc Overhaul smart-fee slider, adjust default confirmation target (jonasschnelli)

	#9043 273bde3 Return useful error message on ATMP failure (MarcoFalke)

	#9088 4e57824 Reduce ambiguity of warning message (rebroad)

	#8874 e984730 Multiple Selection for peer and ban tables (achow101)

	#9145 924745d Make network disabled icon 50% opaque (MarcoFalke)

	#9130 ac489b2 Mention the new network toggle functionality in the tooltip (paveljanik)

	#9218 4d955fc Show progress overlay when clicking spinner icon (laanwj)

	#9280 e15660c Show ModalOverlay by pressing the progress bar, allow hiding (jonasschnelli)

	#9296 fde7d99 Fix missed change to WalletTx structure (morcos)

	#9266 2044e37 Bugfix: Qt/RPCConsole: Put column enum in the right places (luke-jr)

	#9255 9851a84 layoutAboutToChange signal is called layoutAboutToBeChanged (laanwj)

	#9330 47e6a19 Console: add security warning (jonasschnelli)

	#9329 db45ad8 Console: allow empty arguments (jonasschnelli)

	#8877 6dc4c43 Qt RPC console: history sensitive-data filter, and saving input line when browsing history (luke-jr)

	#9462 649cf5f Do not translate tilde character (MarcoFalke)

	#9457 123ea73 Select more files for translation (MarcoFalke)

	#9413 fd7d8c7 CoinControl: Allow non-wallet owned change addresses (jonasschnelli)

	#9461 b250686 Improve progress display during headers-sync and peer-finding (jonasschnelli)

	#9588 5086452 Use nPowTargetSpacing constant (MarcoFalke)

	#9637 d9e4d1d Fix transaction details output-index to reflect vout index (jonasschnelli)

	#9718 36f9d3a Qt/Intro: Various fixes (luke-jr)

	#9735 ec66d06 devtools: Handle Qt formatting characters edge-case in update-translations.py (laanwj)

	#9755 a441db0 Bugfix: Qt/Options: Restore persistent “restart required” notice (luke-jr)

	#9817 7d75a5a Fix segfault crash when shutdown the GUI in disablewallet mode (jonasschnelli)

Wallet

	#8152 b9c1cd8 Remove CWalletDB* parameter from CWallet::AddToWallet (pstratem)

	#8432 c7e05b3 Make CWallet::fFileBacked private (pstratem)

	#8445 f916700 Move CWallet::setKeyPool to private section of CWallet (pstratem)

	#8564 0168019 Remove unused code/conditions in ReadAtCursor (jonasschnelli)

	#8601 37ac678 Add option to opt into full-RBF when sending funds (rebase, original by petertodd) (laanwj)

	#8494 a5b20ed init, wallet: ParameterInteraction() iff wallet enabled (MarcoFalke)

	#8760 02ac669 init: Get rid of some ENABLE_WALLET (MarcoFalke)

	#8696 a1f8d3e Wallet: Remove last external reference to CWalletDB (pstratem)

	#8768 886e8c9 init: Get rid of fDisableWallet (MarcoFalke)

	#8486 ab0b411 Add high transaction fee warnings (MarcoFalke)

	#8851 940748b Move key derivation logic from GenerateNewKey to DeriveNewChildKey (pstratem)

	#8287 e10af96 Set fLimitFree = true (MarcoFalke)

	#8928 c587577 Fix init segfault where InitLoadWallet() calls ATMP before genesis (TheBlueMatt)

	#7551 f2d7056 Add importmulti RPC call (pedrobranco)

	#9016 0dcb888 Return useful error message on ATMP failure (instagibbs)

	#8753 f8723d2 Locked memory manager (laanwj)

	#8828 a4fd8df Move CWalletDB::ReorderTransactions to CWallet (pstratem)

	#8977 6a1343f Refactor wallet/init interaction (Reaccept wtx, flush thread) (jonasschnelli)

	#9036 ed0cc50 Change default confirm target from 2 to 6 (laanwj)

	#9071 d1871da Declare wallet.h functions inline (sipa)

	#9132 f54e460 Make strWalletFile const (jonasschnelli)

	#9141 5ea5e04 Remove unnecessary calls to CheckFinalTx (jonasschnelli)

	#9165 c01f16a SendMoney: use already-calculated balance (instagibbs)

	#9311 a336d13 Flush wallet after abandontransaction (morcos)

	#8717 38e4887 Addition of ImmatureCreditCached to MarkDirty() (spencerlievens)

	#9446 510c0d9 SetMerkleBranch: remove unused code, remove cs_main lock requirement (jonasschnelli)

	#8776 2a524b8 Wallet refactoring leading up to multiwallet (luke-jr)

	#9465 a7d55c9 Do not perform ECDSA signing in the fee calculation inner loop (gmaxwell)

	#9404 12e3112 Smarter coordination of change and fee in CreateTransaction (morcos)

	#9377 fb75cd0 fundrawtransaction: Keep change-output keys by default, make it optional (jonasschnelli)

	#9578 923dc44 Add missing mempool lock for CalculateMemPoolAncestors (TheBlueMatt)

	#9227 02464da Make nWalletDBUpdated atomic to avoid a potential race (pstratem)

	#9764 f8af89a Prevent “overrides a member function but is not marked ‘override’” warnings (laanwj)

	#9771 e43a585 Add missing cs_wallet lock that triggers new lock held assertion (ryanofsky)

	#9316 3097ea4 Disable free transactions when relay is disabled (MarcoFalke)

	#9615 d2c9e4d Wallet incremental fee (morcos)

	#9760 40c754c Remove importmulti always-true check (ryanofsky)

Tests and QA

	#8270 6e5e5ab Tests: Use portable #! in python scripts (/usr/bin/env) (ChoHag)

	#8534,#8504 Remove java comparison tool (laanwj,MarcoFalke)

	#8482 740cff5 Use single cache dir for chains (MarcoFalke)

	#8450 21857d2 Replace rpc_wallet_tests.cpp with python RPC unit tests (pstratem)

	#8671 ddc3080 Minimal fix to slow prevector tests as stopgap measure (JeremyRubin)

	#8680 666eaf0 Address Travis spurious failures (theuni)

	#8789 e31a43c pull-tester: Only print output when failed (MarcoFalke)

	#8810 14e8f99 tests: Add exception error message for JSONRPCException (laanwj)

	#8830 ef0801b test: Add option to run bitcoin-util-test.py manually (jnewbery)

	#8881 e66cc1d Add some verbose logging to bitcoin-util-test.py (jnewbery)

	#8922 0329511 Send segwit-encoded blocktxn messages in p2p-compactblocks (TheBlueMatt)

	#8873 74dc388 Add microbenchmarks to profile more code paths (ryanofsky)

	#9032 6a8be7b test: Add format-dependent comparison to bctest (laanwj)

	#9023 774db92 Add logging to bitcoin-util-test.py (jnewbery)

	#9065 c9bdf9a Merge doc/unit-tests.md into src/test/README.md (laanwj)

	#9069 ed64bce Clean up bctest.py and bitcoin-util-test.py (jnewbery)

	#9095 b8f43e3 test: Fix test_random includes (MarcoFalke)

	#8894 faec09b Testing: Include fRelay in mininode version messages (jnewbery)

	#9097 e536499 Rework sync_* and preciousblock.py (MarcoFalke)

	#9049 71bc39e Remove duplicatable duplicate-input check from CheckTransaction (TheBlueMatt)

	#9136 b422913 sync_blocks cleanup (ryanofsky)

	#9151 4333b1c proxy_test: Calculate hardcoded port numbers (MarcoFalke)

	#9206 e662d28 Make test constant consistent with consensus.h (btcdrak)

	#9139 0de7fd3 Change sync_blocks to pick smarter maxheight (on top of #9196) (ryanofsky)

	#9100 97ec6e5 tx_valid: re-order inputs to how they are encoded (dcousens)

	#9202 e56cf67 bench: Add support for measuring CPU cycles (laanwj)

	#9223 5412c08 unification of Bloom filter representation (s-matthew-english)

	#9257 d7ba4a2 Dump debug logs on travis failures (sdaftuar)

	#9221 9e4bb31 Get rid of duplicate code (MarcoFalke)

	#9274 919db03 Use cached utxo set to fix performance regression (MarcoFalke)

	#9276 ea33f19 Some minor testing cleanups (morcos)

	#9291 8601784 Remove mapOrphanTransactionsByPrev from DoS_tests (sipa)

	#9309 76fcd9d Wallet needs to stay unlocked for whole test (morcos)

	#9172 5bc209c Resurrect pstratem’s “Simple fuzzing framework” (laanwj)

	#9331 c6fd923 Add test for rescan feature of wallet key import RPCs (ryanofsky)

	#9354 b416095 Make fuzzer actually test CTxOutCompressor (sipa)

	#9390,#9416 travis: make distdir (MarcoFalke)

	#9308 0698639 test: Add CCoinsViewCache Access/Modify/Write tests (ryanofsky)

	#9406 0f921e6 Re-enable a blank v1 Tx JSON test (droark)

	#9435 dbc8a8c Removed unused variable in test, fixing warning (ryanofsky)

	#9436 dce853e test: Include tx data in EXTRA_DIST (MarcoFalke)

	#9525 02e5308 test: Include tx data in EXTRA_DIST (MarcoFalke)

	#9498 054d664 Basic CCheckQueue Benchmarks (JeremyRubin)

	#9554 0b96abc test: Avoid potential NULL pointer dereference in addrman_tests.cpp (practicalswift)

	#9628 f895023 Increase a sync_blocks timeout in pruning.py (sdaftuar)

	#9638 a7ea2f8 Actually test assertions in pruning.py (MarcoFalke)

	#9647 e99f0d7 Skip RAII event tests if libevent is built without event_set_mem_functions (luke-jr)

	#9691 fc67cd2 Init ECC context for test_bitcoin_fuzzy (gmaxwell)

	#9712 d304fef bench: Fix initialization order in registration (laanwj)

	#9707 b860915 Fix RPC failure testing (jnewbery)

	#9269 43e8150 Align struct COrphan definition (sipa)

	#9820 599c69a Fix pruning test broken by 2 hour manual prune window (ryanofsky)

	#9824 260c71c qa: Check return code when stopping nodes (MarcoFalke)

	#9875 50953c2 tests: Fix dangling pwalletMain pointer in wallet tests (laanwj)

	#9839 eddaa6b [qa] Make import-rescan.py watchonly check reliable (ryanofsky)

Documentation

	#8332 806b9e7 Clarify witness branches in transaction.h serialization (dcousens)

	#8935 0306978 Documentation: Building on Windows with WSL (pooleja)

	#9144 c98f6b3 Correct waitforblockheight example help text (fanquake)

	#9407 041331e Added missing colons in when running help command (anditto)

	#9378 870cd2b Add documentation for CWalletTx::fFromMe member (ryanofsky)

	#9297 0b73807 Various RPC help outputs updated (Mirobit)

	#9613 07421cf Clarify getbalance help string to explain interaction with bumpfee (ryanofsky)

	#9663 e30d928 Clarify listunspent amount description (instagibbs)

	#9396 d65a13b Updated listsinceblock rpc documentation (accraze)

	#8747 ce43630 rpc: Fix transaction size comments and RPC help text (jnewbery)

	#8058 bbd9740 Doc: Add issue template (AmirAbrams)

	#8567 85d4e21 Add default port numbers to REST doc (djpnewton)

	#8624 89de153 build: Mention curl (MarcoFalke)

	#8786 9da7366 Mandatory copyright agreement (achow101)

	#8823 7b05af6 Add privacy recommendation when running hidden service (laanwj)

	#9433 caa2f10 Update the Windows build notes (droark)

	#8879 f928050 Rework docs (MarcoFalke)

	#8887 61d191f Improve GitHub issue template (fanquake)

	#8787 279bbad Add missing autogen to example builds (AmirAbrams)

	#8892 d270c30 Add build instructions for FreeBSD (laanwj)

	#8890 c71a654 Update Doxygen configuration file (fanquake)

	#9207 fa1f944 Move comments above bash command in build-unix (AmirAbrams)

	#9219 c4522e7 Improve windows build instructions using Linux subsystem (laanwj)

	#8954 932d02a contrib: Add README for pgp keys (MarcoFalke)

	#9093 2fae5b9 release-process: Mention GitHub release and archived release notes (MarcoFalke)

	#8743 bae178f Remove old manpages from contrib/debian in favour of doc/man (fanquake)

	#9550 4105cb6 Trim down the XP notice and say more about what we support (gmaxwell)

	#9246 9851498 Developer docs about existing subtrees (gmaxwell)

	#9401 c2ea1e6 Make rpcauth help message clearer, add example in example .conf (instagibbs)

	#9022,#9033 Document dropping OS X 10.7 support (fanquake, MarcoFalke)

	#8771 bc9e3ab contributing: Mention not to open several pulls (luke-jr)

	#8852 7b784cc Mention Gitian building script in doc (Laudaa) (laanwj)

	#8915 03dd707 Add copyright/patent issues to possible NACK reasons (petertodd)

	#8965 23e03f8 Mention that PPA doesn’t support Debian (anduck)

	#9115 bfc7aad Mention reporting security issues responsibly (paveljanik)

	#9840 08e0690 Update sendfrom RPC help to correct coin selection misconception (ryanofsky)

	#9865 289204f Change bitcoin address in RPC help message (marijnfs)

Miscellaneous

	#8274 7a2d402 util: Update tinyformat (laanwj)

	#8291 5cac8b1 util: CopyrightHolders: Check for untranslated substitution (MarcoFalke)

	#8557 44691f3 contrib: Rework verifybinaries (MarcoFalke)

	#8621 e8ed6eb contrib: python: Don’t use shell=True (MarcoFalke)

	#8813 fb24d7e bitcoind: Daemonize using daemon(3) (laanwj)

	#9004 67728a3 Clarify listenonion (unsystemizer)

	#8674 bae81b8 tools for analyzing, updating and adding copyright headers in source files (isle2983)

	#8976 8c6218a libconsensus: Add input validation of flags (laanwj)

	#9112 46027e8 Avoid ugly exception in log on unknown inv type (laanwj)

	#8837 2108911 Allow bitcoin-tx to parse partial transactions (jnewbery)

	#9204 74ced54 Clarify CreateTransaction error messages (instagibbs)

	#9265 31bcc66 bitcoin-cli: Make error message less confusing (laanwj)

	#9303 72bf1b3 Update comments in ctaes (sipa)

	#9417 c4b7d4f Do not evaluate hidden LogPrint arguments (sipa)

	#9506 593a00c RFC: Improve style for if indentation (sipa)

	#8883 d5d4ad8 Add all standard TXO types to bitcoin-tx (jnewbery)

	#9531 23281a4 Release notes for estimation changes (morcos)

	#9486 f62bc10 Make peer=%d log prints consistent (TheBlueMatt)

	#9552 41cb05c Add IPv6 support to qos.sh (jamesmacwhite)

	#9542 e9e7993 Docs: Update CONTRIBUTING.md (jnewbery)

	#9649 53ab12d Remove unused clang format dev script (MarcoFalke)

	#9625 77bd8c4 Increase minimum debug.log size to 10MB after shrink (morcos)

	#9070 7b22e50 Lockedpool fixes (kazcw)

	#8779 7008e28 contrib: Delete spendfrom (MarcoFalke)

	#9587,#8793,#9496,#8191,#8109,#8655,#8472,#8677,#8981,#9124 Avoid shadowing of variables (paveljanik)

	#9063 f2a6e82 Use deprecated MAP_ANON if MAP_ANONYMOUS is not defined (paveljanik)

	#9060 1107653 Fix bloom filter init to isEmpty = true (robmcl4)

	#8613 613bda4 LevelDB 1.19 (sipa)

	#9225 5488514 Fix some benign races (TheBlueMatt)

	#8736 5fa7b07 base58: Improve DecodeBase58 performance (wjx)

	#9039 e81df49 Various serialization simplifcations and optimizations (sipa)

	#9010 a143b88 Split up AppInit2 into multiple phases, daemonize after datadir lock errors (laanwj)

	#9230 c79e52a Fix some benign races in timestamp logging (TheBlueMatt)

	#9183,#9260 Mrs Peacock in The Library with The Candlestick (killed main.{h,cpp}) (TheBlueMatt)

	#9236 7f72568 Fix races for strMiscWarning and fLargeWork*Found, make QT runawayException use GetWarnings (gmaxwell)

	#9243 7aa7004 Clean up mapArgs and mapMultiArgs Usage (TheBlueMatt)

	#9387 cfe41d7 RAII of libevent stuff using unique ptrs with deleters (kallewoof)

	#9472 fac0f30 Disentangle progress estimation from checkpoints and update it (sipa)

	#9512 6012967 Fix various things -fsanitize complains about (sipa)

	#9373,#9580 Various linearization script issues (droark)

	#9674 dd163f5 Lock debugging: Always enforce strict lock ordering (try or not) (TheBlueMatt)

	#8453,#9334 Update to latest libsecp256k1 (laanwj,sipa)

	#9656 7c93952 Check verify-commits on pushes to master (TheBlueMatt)

	#9679 a351162 Access WorkQueue::running only within the cs lock (TheBlueMatt)

	#9777 8dee822 Handle unusual maxsigcachesize gracefully (jnewbery)

	#8863,#8807 univalue: Pull subtree (MarcoFalke)

	#9798 e22c067 Fix Issue #9775 (Check returned value of fopen) (kirit93)

	#9856 69832aa Terminate immediately when allocation fails (theuni)

Credits

Thanks to everyone who directly contributed to this release:

	accraze

	adlawren

	Alex Morcos

	Alexey Vesnin

	Amir Abrams

	Anders Øyvind Urke-Sætre

	Anditto Heristyo

	Andrew Chow

	anduck

	Anthony Towns

	Brian Deery

	BtcDrak

	Chris Moore

	Chris Stewart

	Christian Barcenas

	Christian Decker

	Cory Fields

	crowning-

	CryptAxe

	CryptoVote

	Dagur Valberg Johannsson

	Daniel Cousens

	Daniel Kraft

	Derek Miller

	djpnewton

	Don Patterson

	Doug

	Douglas Roark

	Ethan Heilman

	fsb4000

	Gaurav Rana

	Geoffrey Tsui

	Greg Walker

	Gregory Maxwell

	Gregory Sanders

	Hampus Sjöberg

	isle2983

	Ivo van der Sangen

	James White

	Jameson Lopp

	Jeremy Rubin

	Jiaxing Wang

	jnewbery

	John Newbery

	Johnson Lau

	Jon Lund Steffensen

	Jonas Schnelli

	jonnynewbs

	Jorge Timón

	Justin Camarena

	Karl-Johan Alm

	Kaz Wesley

	kirit93

	Koki Takahashi

	Lauda

	leijurv

	lizhi

	Luke Dashjr

	maiiz

	MarcoFalke

	Marijn Stollenga

	Marty Jones

	Masahiko Hyuga

	Matt Corallo

	Matthew King

	matthias

	Micha

	Michael Ford

	Michael Rotarius

	Mitchell Cash

	mrbandrews

	mruddy

	Nicolas DORIER

	nomnombtc

	Patrick Strateman

	Pavel Janík

	Pedro Branco

	Peter Todd

	Pieter Wuille

	poole_party

	practicalswift

	R E Broadley

	randy-waterhouse

	Richard Kiss

	Robert McLaughlin

	rodasmith

	Russell Yanofsky

	S. Matthew English

	Sev

	Spencer Lievens

	Stanislas Marion

	Steven

	Suhas Daftuar

	Thomas Snider

	UdjinM6

	unsystemizer

	whythat

	Will Binns

	Wladimir J. van der Laan

	wodry

	Zak Wilcox

As well as everyone that helped translating on Transifex [https://www.transifex.com/projects/p/bitcoin/].

 <no title>

 Bitcoin version 0.7.0 is now available for download at:
http://sourceforge.net/projects/bitcoin/files/Bitcoin/bitcoin-0.7.0/

We recommend that everybody running prior versions of bitcoind/Bitcoin-Qt
upgrade to this release, except for users running Mac OSX 10.5.

Please report bugs using the issue tracker at github:
https://github.com/bitcoin/bitcoin/issues

Project source code is hosted at github; you can get
source-only tarballs/zipballs directly from there:
https://github.com/bitcoin/bitcoin/tarball/v0.7.0 # .tar.gz
https://github.com/bitcoin/bitcoin/zipball/v0.7.0 # .zip

Ubuntu Linux users can use the “Personal Package Archive” (PPA)
maintained by Matt Corallo to automatically keep
bitcoin up-to-date. Just type
sudo apt-add-repository ppa:bitcoin/bitcoin
sudo apt-get update
in your terminal, then install the bitcoin-qt package:
sudo apt-get install bitcoin-qt

How to Upgrade

If you are running an older version, shut it down. Wait
until it has completely shut down (which might take a few minutes for older
versions), then run the installer (on Windows) or just copy over
Code:
/Applications/Bitcoin-Qt
(on Mac) or
Code:
bitcoind/bitcoin-qt
(on Linux).

If you were running on Linux with a version that might have been compiled
with a different version of Berkeley DB (for example, if you were using the
PPA and are switching to the binary release), then run the old version again
with the -detachdb argument and shut it down; if you do not, then the new
version will not be able to read the database files and will exit with an error.

Incompatible Changes

	Replaced the ‘getmemorypool’ RPC command with ‘getblocktemplate/submitblock’
and ‘getrawmempool’ commands.

	Remove deprecated RPC ‘getblocknumber’

Bitcoin Improvement Proposals implemented

BIP 22 - ‘getblocktemplate’, ‘submitblock’ RPCs
BIP 34 - block version 2, height in coinbase
BIP 35 - ‘mempool’ message, extended ‘getdata’ message behavior

Core bitcoin handling and blockchain database

	Reduced CPU usage, by eliminating some redundant hash calculations

	Cache signature verifications, to eliminate redundant signature checks

	Transactions with zero-value outputs are considered non-standard

	Mining: when creating new blocks, sort ‘paid’ area by fee-per-kb

	Database: better validation of on-disk stored data

	Database: minor optimizations and reliability improvements

	-loadblock=FILE will import an external block file

	Additional DoS (denial-of-service) prevention measures

	New blockchain checkpoint at block 193,000

JSON-RPC API

	Internal HTTP server is now thread-per-connection, rather than
a single-threaded queue that would stall on network I/O.

	Internal HTTP server supports HTTP/1.1, pipelined requests and
connection keep-alive.

	Support JSON-RPC 2.0 batches, to encapsulate multiple JSON-RPC requests
within a single HTTP request.

	IPv6 support

	Added raw transaction API. See https://gist.github.com/2839617

	Added ‘getrawmempool’, to list contents of TX memory pool

	Added ‘getpeerinfo’, to list data about each connected network peer

	Added ‘listaddressgroupings’ for better coin control

	Rework getblock call.

	Remove deprecated RPC ‘getblocknumber’

	Remove superceded RPC ‘getmemorypool’ (see BIP 22, above)

	listtransactions output now displays “smart” times for transactions,
and ‘blocktime’ and ‘timereceived’ fields were added

P2P networking

	IPv6 support

	Tor hidden service support (see doc/Tor.txt)

	Attempts to fix “stuck blockchain download” problems

	Replace BDB database “addr.dat” with internally-managed “peers.dat”
file containing peer address data.

	Lower default send buffer from 10MB to 1MB

	proxy: SOCKS5 by default

	Support connecting by hostnames passed to proxy

	Add -seednode connections, and use this instead of DNS seeds when proxied

	Added -externalip and -discover

	Add -onlynet to connect only to a given network (IPv4, IPv6, or Tor)

	Se